| Step |
Hyp |
Ref |
Expression |
| 1 |
|
symg1bas.1 |
⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) |
| 2 |
|
symg1bas.2 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 3 |
|
symg2bas.0 |
⊢ 𝐴 = { 𝐼 , 𝐽 } |
| 4 |
|
prfi |
⊢ { 𝐼 , 𝐽 } ∈ Fin |
| 5 |
3 4
|
eqeltri |
⊢ 𝐴 ∈ Fin |
| 6 |
1 2
|
symghash |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐵 ) = ( ! ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 7 |
5 6
|
ax-mp |
⊢ ( ♯ ‘ 𝐵 ) = ( ! ‘ ( ♯ ‘ 𝐴 ) ) |
| 8 |
3
|
fveq2i |
⊢ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { 𝐼 , 𝐽 } ) |
| 9 |
|
elex |
⊢ ( 𝐼 ∈ 𝑉 → 𝐼 ∈ V ) |
| 10 |
|
elex |
⊢ ( 𝐽 ∈ 𝑊 → 𝐽 ∈ V ) |
| 11 |
|
id |
⊢ ( 𝐼 ≠ 𝐽 → 𝐼 ≠ 𝐽 ) |
| 12 |
9 10 11
|
3anim123i |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽 ) → ( 𝐼 ∈ V ∧ 𝐽 ∈ V ∧ 𝐼 ≠ 𝐽 ) ) |
| 13 |
|
hashprb |
⊢ ( ( 𝐼 ∈ V ∧ 𝐽 ∈ V ∧ 𝐼 ≠ 𝐽 ) ↔ ( ♯ ‘ { 𝐼 , 𝐽 } ) = 2 ) |
| 14 |
12 13
|
sylib |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽 ) → ( ♯ ‘ { 𝐼 , 𝐽 } ) = 2 ) |
| 15 |
8 14
|
eqtrid |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽 ) → ( ♯ ‘ 𝐴 ) = 2 ) |
| 16 |
15
|
fveq2d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽 ) → ( ! ‘ ( ♯ ‘ 𝐴 ) ) = ( ! ‘ 2 ) ) |
| 17 |
|
fac2 |
⊢ ( ! ‘ 2 ) = 2 |
| 18 |
16 17
|
eqtrdi |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽 ) → ( ! ‘ ( ♯ ‘ 𝐴 ) ) = 2 ) |
| 19 |
7 18
|
eqtrid |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽 ) → ( ♯ ‘ 𝐵 ) = 2 ) |