Metamath Proof Explorer


Theorem symg2hash

Description: The symmetric group on a (proper) pair has cardinality 2 . (Contributed by AV, 9-Dec-2018)

Ref Expression
Hypotheses symg1bas.1 G=SymGrpA
symg1bas.2 B=BaseG
symg2bas.0 A=IJ
Assertion symg2hash IVJWIJB=2

Proof

Step Hyp Ref Expression
1 symg1bas.1 G=SymGrpA
2 symg1bas.2 B=BaseG
3 symg2bas.0 A=IJ
4 prfi IJFin
5 3 4 eqeltri AFin
6 1 2 symghash AFinB=A!
7 5 6 ax-mp B=A!
8 3 fveq2i A=IJ
9 elex IVIV
10 elex JWJV
11 id IJIJ
12 9 10 11 3anim123i IVJWIJIVJVIJ
13 hashprb IVJVIJIJ=2
14 12 13 sylib IVJWIJIJ=2
15 8 14 eqtrid IVJWIJA=2
16 15 fveq2d IVJWIJA!=2!
17 fac2 2!=2
18 16 17 eqtrdi IVJWIJA!=2
19 7 18 eqtrid IVJWIJB=2