| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnfitr.g | ⊢ 𝐺  =  ( SymGrp ‘ 𝑁 ) | 
						
							| 2 |  | psgnfitr.p | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 3 |  | psgnfitr.t | ⊢ 𝑇  =  ran  ( pmTrsp ‘ 𝑁 ) | 
						
							| 4 |  | eqid | ⊢ ( mrCls ‘ ( SubMnd ‘ 𝐺 ) )  =  ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) | 
						
							| 5 | 3 1 2 4 | symggen2 | ⊢ ( 𝑁  ∈  Fin  →  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ 𝑇 )  =  𝐵 ) | 
						
							| 6 | 1 | symggrp | ⊢ ( 𝑁  ∈  Fin  →  𝐺  ∈  Grp ) | 
						
							| 7 | 6 | grpmndd | ⊢ ( 𝑁  ∈  Fin  →  𝐺  ∈  Mnd ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 9 | 3 1 8 | symgtrf | ⊢ 𝑇  ⊆  ( Base ‘ 𝐺 ) | 
						
							| 10 | 8 4 | gsumwspan | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑇  ⊆  ( Base ‘ 𝐺 ) )  →  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ 𝑇 )  =  ran  ( 𝑤  ∈  Word  𝑇  ↦  ( 𝐺  Σg  𝑤 ) ) ) | 
						
							| 11 | 7 9 10 | sylancl | ⊢ ( 𝑁  ∈  Fin  →  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ 𝑇 )  =  ran  ( 𝑤  ∈  Word  𝑇  ↦  ( 𝐺  Σg  𝑤 ) ) ) | 
						
							| 12 | 5 11 | eqtr3d | ⊢ ( 𝑁  ∈  Fin  →  𝐵  =  ran  ( 𝑤  ∈  Word  𝑇  ↦  ( 𝐺  Σg  𝑤 ) ) ) | 
						
							| 13 | 12 | eleq2d | ⊢ ( 𝑁  ∈  Fin  →  ( 𝑄  ∈  𝐵  ↔  𝑄  ∈  ran  ( 𝑤  ∈  Word  𝑇  ↦  ( 𝐺  Σg  𝑤 ) ) ) ) | 
						
							| 14 |  | eqid | ⊢ ( 𝑤  ∈  Word  𝑇  ↦  ( 𝐺  Σg  𝑤 ) )  =  ( 𝑤  ∈  Word  𝑇  ↦  ( 𝐺  Σg  𝑤 ) ) | 
						
							| 15 |  | ovex | ⊢ ( 𝐺  Σg  𝑤 )  ∈  V | 
						
							| 16 | 14 15 | elrnmpti | ⊢ ( 𝑄  ∈  ran  ( 𝑤  ∈  Word  𝑇  ↦  ( 𝐺  Σg  𝑤 ) )  ↔  ∃ 𝑤  ∈  Word  𝑇 𝑄  =  ( 𝐺  Σg  𝑤 ) ) | 
						
							| 17 | 13 16 | bitrdi | ⊢ ( 𝑁  ∈  Fin  →  ( 𝑄  ∈  𝐵  ↔  ∃ 𝑤  ∈  Word  𝑇 𝑄  =  ( 𝐺  Σg  𝑤 ) ) ) |