Step |
Hyp |
Ref |
Expression |
1 |
|
smadiadet.a |
|
2 |
|
smadiadet.b |
|
3 |
|
smadiadet.r |
|
4 |
|
smadiadet.d |
|
5 |
|
smadiadet.h |
|
6 |
|
eqid |
|
7 |
1 6 2
|
submaval |
|
8 |
7
|
3anidm23 |
|
9 |
8
|
fveq2d |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
1 2 10 11 12
|
minmar1val |
|
14 |
13
|
3anidm23 |
|
15 |
14
|
fveq2d |
|
16 |
1 2 3 12 11
|
marep01ma |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
4 1 2 17 18 19 20 21
|
mdetleib2 |
|
23 |
3 16 22
|
sylancr |
|
24 |
23
|
adantr |
|
25 |
|
eqid |
|
26 |
|
eqid |
|
27 |
|
crngring |
|
28 |
|
ringcmn |
|
29 |
3 27 28
|
mp2b |
|
30 |
29
|
a1i |
|
31 |
1 2
|
matrcl |
|
32 |
31
|
simpld |
|
33 |
|
eqid |
|
34 |
33 17
|
symgbasfi |
|
35 |
32 34
|
syl |
|
36 |
35
|
adantr |
|
37 |
1 2 3 12 11 17 21 18 19 20
|
smadiadetlem1 |
|
38 |
|
disjdif |
|
39 |
38
|
a1i |
|
40 |
|
ssrab2 |
|
41 |
40
|
a1i |
|
42 |
|
undif |
|
43 |
41 42
|
sylib |
|
44 |
43
|
eqcomd |
|
45 |
25 26 30 36 37 39 44
|
gsummptfidmsplit |
|
46 |
|
eqid |
|
47 |
|
eqid |
|
48 |
1 2 3 12 11 17 21 18 19 20 46 47
|
smadiadetlem4 |
|
49 |
1 2 3 12 11 17 21 18 19 20
|
smadiadetlem2 |
|
50 |
48 49
|
oveq12d |
|
51 |
|
ringmnd |
|
52 |
3 27 51
|
mp2b |
|
53 |
|
diffi |
|
54 |
32 53
|
syl |
|
55 |
54
|
adantr |
|
56 |
|
eqid |
|
57 |
56 46
|
symgbasfi |
|
58 |
55 57
|
syl |
|
59 |
|
simpll |
|
60 |
|
difssd |
|
61 |
1 2
|
submabas |
|
62 |
59 60 61
|
syl2anc |
|
63 |
|
simpr |
|
64 |
|
eqid |
|
65 |
|
eqid |
|
66 |
46 47 18 64 65 21
|
madetsmelbas2 |
|
67 |
3 62 63 66
|
mp3an2i |
|
68 |
67
|
ralrimiva |
|
69 |
25 30 58 68
|
gsummptcl |
|
70 |
25 26 12
|
mndrid |
|
71 |
52 69 70
|
sylancr |
|
72 |
|
difssd |
|
73 |
61 3
|
jctil |
|
74 |
72 73
|
sylan2 |
|
75 |
5 64 65 46 18 47 20 21
|
mdetleib2 |
|
76 |
74 75
|
syl |
|
77 |
71 76
|
eqtr4d |
|
78 |
45 50 77
|
3eqtrd |
|
79 |
15 24 78
|
3eqtrd |
|
80 |
9 79
|
eqtr4d |
|