Metamath Proof Explorer


Theorem smadiadetglem1

Description: Lemma 1 for smadiadetg . (Contributed by AV, 13-Feb-2019)

Ref Expression
Hypotheses smadiadet.a A = N Mat R
smadiadet.b B = Base A
smadiadet.r R CRing
smadiadet.d D = N maDet R
smadiadet.h E = N K maDet R
Assertion smadiadetglem1 M B K N S Base R K M N matRRep R S K N K × N = K N minMatR1 R M K N K × N

Proof

Step Hyp Ref Expression
1 smadiadet.a A = N Mat R
2 smadiadet.b B = Base A
3 smadiadet.r R CRing
4 smadiadet.d D = N maDet R
5 smadiadet.h E = N K maDet R
6 mpodifsnif i N K , j N if i = K if j = K S 0 R i M j = i N K , j N i M j
7 mpodifsnif i N K , j N if i = K if j = K 1 R 0 R i M j = i N K , j N i M j
8 6 7 eqtr4i i N K , j N if i = K if j = K S 0 R i M j = i N K , j N if i = K if j = K 1 R 0 R i M j
9 difss N K N
10 ssid N N
11 9 10 pm3.2i N K N N N
12 resmpo N K N N N i N , j N if i = K if j = K S 0 R i M j N K × N = i N K , j N if i = K if j = K S 0 R i M j
13 11 12 mp1i M B K N S Base R i N , j N if i = K if j = K S 0 R i M j N K × N = i N K , j N if i = K if j = K S 0 R i M j
14 resmpo N K N N N i N , j N if i = K if j = K 1 R 0 R i M j N K × N = i N K , j N if i = K if j = K 1 R 0 R i M j
15 11 14 mp1i M B K N S Base R i N , j N if i = K if j = K 1 R 0 R i M j N K × N = i N K , j N if i = K if j = K 1 R 0 R i M j
16 8 13 15 3eqtr4a M B K N S Base R i N , j N if i = K if j = K S 0 R i M j N K × N = i N , j N if i = K if j = K 1 R 0 R i M j N K × N
17 simp1 M B K N S Base R M B
18 simp3 M B K N S Base R S Base R
19 simp2 M B K N S Base R K N
20 eqid N matRRep R = N matRRep R
21 eqid 0 R = 0 R
22 1 2 20 21 marrepval M B S Base R K N K N K M N matRRep R S K = i N , j N if i = K if j = K S 0 R i M j
23 17 18 19 19 22 syl22anc M B K N S Base R K M N matRRep R S K = i N , j N if i = K if j = K S 0 R i M j
24 23 reseq1d M B K N S Base R K M N matRRep R S K N K × N = i N , j N if i = K if j = K S 0 R i M j N K × N
25 crngring R CRing R Ring
26 eqid Base R = Base R
27 eqid 1 R = 1 R
28 26 27 ringidcl R Ring 1 R Base R
29 25 28 syl R CRing 1 R Base R
30 3 29 mp1i M B K N S Base R 1 R Base R
31 1 2 20 21 marrepval M B 1 R Base R K N K N K M N matRRep R 1 R K = i N , j N if i = K if j = K 1 R 0 R i M j
32 17 30 19 19 31 syl22anc M B K N S Base R K M N matRRep R 1 R K = i N , j N if i = K if j = K 1 R 0 R i M j
33 32 reseq1d M B K N S Base R K M N matRRep R 1 R K N K × N = i N , j N if i = K if j = K 1 R 0 R i M j N K × N
34 16 24 33 3eqtr4d M B K N S Base R K M N matRRep R S K N K × N = K M N matRRep R 1 R K N K × N
35 3 25 ax-mp R Ring
36 1 2 27 minmar1marrep R Ring M B N minMatR1 R M = M N matRRep R 1 R
37 35 17 36 sylancr M B K N S Base R N minMatR1 R M = M N matRRep R 1 R
38 37 eqcomd M B K N S Base R M N matRRep R 1 R = N minMatR1 R M
39 38 oveqd M B K N S Base R K M N matRRep R 1 R K = K N minMatR1 R M K
40 39 reseq1d M B K N S Base R K M N matRRep R 1 R K N K × N = K N minMatR1 R M K N K × N
41 34 40 eqtrd M B K N S Base R K M N matRRep R S K N K × N = K N minMatR1 R M K N K × N