Metamath Proof Explorer


Theorem minmar1marrep

Description: The minor matrix is a special case of a matrix with a replaced row. (Contributed by AV, 12-Feb-2019) (Revised by AV, 4-Jul-2022)

Ref Expression
Hypotheses minmar1marrep.a A = N Mat R
minmar1marrep.b B = Base A
minmar1marrep.o 1 ˙ = 1 R
Assertion minmar1marrep R Ring M B N minMatR1 R M = M N matRRep R 1 ˙

Proof

Step Hyp Ref Expression
1 minmar1marrep.a A = N Mat R
2 minmar1marrep.b B = Base A
3 minmar1marrep.o 1 ˙ = 1 R
4 eqid N minMatR1 R = N minMatR1 R
5 eqid 0 R = 0 R
6 1 2 4 3 5 minmar1val0 M B N minMatR1 R M = k N , l N i N , j N if i = k if j = l 1 ˙ 0 R i M j
7 6 adantl R Ring M B N minMatR1 R M = k N , l N i N , j N if i = k if j = l 1 ˙ 0 R i M j
8 simpr R Ring M B M B
9 eqid Base R = Base R
10 9 3 ringidcl R Ring 1 ˙ Base R
11 10 adantr R Ring M B 1 ˙ Base R
12 eqid N matRRep R = N matRRep R
13 1 2 12 5 marrepval0 M B 1 ˙ Base R M N matRRep R 1 ˙ = k N , l N i N , j N if i = k if j = l 1 ˙ 0 R i M j
14 8 11 13 syl2anc R Ring M B M N matRRep R 1 ˙ = k N , l N i N , j N if i = k if j = l 1 ˙ 0 R i M j
15 7 14 eqtr4d R Ring M B N minMatR1 R M = M N matRRep R 1 ˙