Metamath Proof Explorer


Theorem marrepval0

Description: Second substitution for the definition of the matrix row replacement function. (Contributed by AV, 12-Feb-2019)

Ref Expression
Hypotheses marrepfval.a A=NMatR
marrepfval.b B=BaseA
marrepfval.q Q=NmatRRepR
marrepfval.z 0˙=0R
Assertion marrepval0 MBSBaseRMQS=kN,lNiN,jNifi=kifj=lS0˙iMj

Proof

Step Hyp Ref Expression
1 marrepfval.a A=NMatR
2 marrepfval.b B=BaseA
3 marrepfval.q Q=NmatRRepR
4 marrepfval.z 0˙=0R
5 1 2 matrcl MBNFinRV
6 5 simpld MBNFin
7 6 6 jca MBNFinNFin
8 7 adantr MBSBaseRNFinNFin
9 mpoexga NFinNFinkN,lNiN,jNifi=kifj=lS0˙iMjV
10 8 9 syl MBSBaseRkN,lNiN,jNifi=kifj=lS0˙iMjV
11 ifeq1 s=Sifj=ls0˙=ifj=lS0˙
12 11 adantl m=Ms=Sifj=ls0˙=ifj=lS0˙
13 oveq m=Mimj=iMj
14 13 adantr m=Ms=Simj=iMj
15 12 14 ifeq12d m=Ms=Sifi=kifj=ls0˙imj=ifi=kifj=lS0˙iMj
16 15 mpoeq3dv m=Ms=SiN,jNifi=kifj=ls0˙imj=iN,jNifi=kifj=lS0˙iMj
17 16 mpoeq3dv m=Ms=SkN,lNiN,jNifi=kifj=ls0˙imj=kN,lNiN,jNifi=kifj=lS0˙iMj
18 1 2 3 4 marrepfval Q=mB,sBaseRkN,lNiN,jNifi=kifj=ls0˙imj
19 17 18 ovmpoga MBSBaseRkN,lNiN,jNifi=kifj=lS0˙iMjVMQS=kN,lNiN,jNifi=kifj=lS0˙iMj
20 10 19 mpd3an3 MBSBaseRMQS=kN,lNiN,jNifi=kifj=lS0˙iMj