Metamath Proof Explorer


Theorem marrepfval

Description: First substitution for the definition of the matrix row replacement function. (Contributed by AV, 12-Feb-2019) (Proof shortened by AV, 2-Mar-2024)

Ref Expression
Hypotheses marrepfval.a A = N Mat R
marrepfval.b B = Base A
marrepfval.q Q = N matRRep R
marrepfval.z 0 ˙ = 0 R
Assertion marrepfval Q = m B , s Base R k N , l N i N , j N if i = k if j = l s 0 ˙ i m j

Proof

Step Hyp Ref Expression
1 marrepfval.a A = N Mat R
2 marrepfval.b B = Base A
3 marrepfval.q Q = N matRRep R
4 marrepfval.z 0 ˙ = 0 R
5 2 fvexi B V
6 fvexd N V R V Base R V
7 mpoexga B V Base R V m B , s Base R k N , l N i N , j N if i = k if j = l s 0 ˙ i m j V
8 5 6 7 sylancr N V R V m B , s Base R k N , l N i N , j N if i = k if j = l s 0 ˙ i m j V
9 oveq12 n = N r = R n Mat r = N Mat R
10 9 fveq2d n = N r = R Base n Mat r = Base N Mat R
11 1 fveq2i Base A = Base N Mat R
12 2 11 eqtri B = Base N Mat R
13 10 12 eqtr4di n = N r = R Base n Mat r = B
14 fveq2 r = R Base r = Base R
15 14 adantl n = N r = R Base r = Base R
16 simpl n = N r = R n = N
17 fveq2 r = R 0 r = 0 R
18 17 4 eqtr4di r = R 0 r = 0 ˙
19 18 ifeq2d r = R if j = l s 0 r = if j = l s 0 ˙
20 19 ifeq1d r = R if i = k if j = l s 0 r i m j = if i = k if j = l s 0 ˙ i m j
21 20 adantl n = N r = R if i = k if j = l s 0 r i m j = if i = k if j = l s 0 ˙ i m j
22 16 16 21 mpoeq123dv n = N r = R i n , j n if i = k if j = l s 0 r i m j = i N , j N if i = k if j = l s 0 ˙ i m j
23 16 16 22 mpoeq123dv n = N r = R k n , l n i n , j n if i = k if j = l s 0 r i m j = k N , l N i N , j N if i = k if j = l s 0 ˙ i m j
24 13 15 23 mpoeq123dv n = N r = R m Base n Mat r , s Base r k n , l n i n , j n if i = k if j = l s 0 r i m j = m B , s Base R k N , l N i N , j N if i = k if j = l s 0 ˙ i m j
25 df-marrep matRRep = n V , r V m Base n Mat r , s Base r k n , l n i n , j n if i = k if j = l s 0 r i m j
26 24 25 ovmpoga N V R V m B , s Base R k N , l N i N , j N if i = k if j = l s 0 ˙ i m j V N matRRep R = m B , s Base R k N , l N i N , j N if i = k if j = l s 0 ˙ i m j
27 8 26 mpd3an3 N V R V N matRRep R = m B , s Base R k N , l N i N , j N if i = k if j = l s 0 ˙ i m j
28 25 mpondm0 ¬ N V R V N matRRep R =
29 matbas0pc ¬ N V R V Base N Mat R =
30 12 29 eqtrid ¬ N V R V B =
31 30 orcd ¬ N V R V B = Base R =
32 0mpo0 B = Base R = m B , s Base R k N , l N i N , j N if i = k if j = l s 0 ˙ i m j =
33 31 32 syl ¬ N V R V m B , s Base R k N , l N i N , j N if i = k if j = l s 0 ˙ i m j =
34 28 33 eqtr4d ¬ N V R V N matRRep R = m B , s Base R k N , l N i N , j N if i = k if j = l s 0 ˙ i m j
35 27 34 pm2.61i N matRRep R = m B , s Base R k N , l N i N , j N if i = k if j = l s 0 ˙ i m j
36 3 35 eqtri Q = m B , s Base R k N , l N i N , j N if i = k if j = l s 0 ˙ i m j