Step |
Hyp |
Ref |
Expression |
1 |
|
marrepfval.a |
|- A = ( N Mat R ) |
2 |
|
marrepfval.b |
|- B = ( Base ` A ) |
3 |
|
marrepfval.q |
|- Q = ( N matRRep R ) |
4 |
|
marrepfval.z |
|- .0. = ( 0g ` R ) |
5 |
2
|
fvexi |
|- B e. _V |
6 |
|
fvexd |
|- ( ( N e. _V /\ R e. _V ) -> ( Base ` R ) e. _V ) |
7 |
|
mpoexga |
|- ( ( B e. _V /\ ( Base ` R ) e. _V ) -> ( m e. B , s e. ( Base ` R ) |-> ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , s , .0. ) , ( i m j ) ) ) ) ) e. _V ) |
8 |
5 6 7
|
sylancr |
|- ( ( N e. _V /\ R e. _V ) -> ( m e. B , s e. ( Base ` R ) |-> ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , s , .0. ) , ( i m j ) ) ) ) ) e. _V ) |
9 |
|
oveq12 |
|- ( ( n = N /\ r = R ) -> ( n Mat r ) = ( N Mat R ) ) |
10 |
9
|
fveq2d |
|- ( ( n = N /\ r = R ) -> ( Base ` ( n Mat r ) ) = ( Base ` ( N Mat R ) ) ) |
11 |
1
|
fveq2i |
|- ( Base ` A ) = ( Base ` ( N Mat R ) ) |
12 |
2 11
|
eqtri |
|- B = ( Base ` ( N Mat R ) ) |
13 |
10 12
|
eqtr4di |
|- ( ( n = N /\ r = R ) -> ( Base ` ( n Mat r ) ) = B ) |
14 |
|
fveq2 |
|- ( r = R -> ( Base ` r ) = ( Base ` R ) ) |
15 |
14
|
adantl |
|- ( ( n = N /\ r = R ) -> ( Base ` r ) = ( Base ` R ) ) |
16 |
|
simpl |
|- ( ( n = N /\ r = R ) -> n = N ) |
17 |
|
fveq2 |
|- ( r = R -> ( 0g ` r ) = ( 0g ` R ) ) |
18 |
17 4
|
eqtr4di |
|- ( r = R -> ( 0g ` r ) = .0. ) |
19 |
18
|
ifeq2d |
|- ( r = R -> if ( j = l , s , ( 0g ` r ) ) = if ( j = l , s , .0. ) ) |
20 |
19
|
ifeq1d |
|- ( r = R -> if ( i = k , if ( j = l , s , ( 0g ` r ) ) , ( i m j ) ) = if ( i = k , if ( j = l , s , .0. ) , ( i m j ) ) ) |
21 |
20
|
adantl |
|- ( ( n = N /\ r = R ) -> if ( i = k , if ( j = l , s , ( 0g ` r ) ) , ( i m j ) ) = if ( i = k , if ( j = l , s , .0. ) , ( i m j ) ) ) |
22 |
16 16 21
|
mpoeq123dv |
|- ( ( n = N /\ r = R ) -> ( i e. n , j e. n |-> if ( i = k , if ( j = l , s , ( 0g ` r ) ) , ( i m j ) ) ) = ( i e. N , j e. N |-> if ( i = k , if ( j = l , s , .0. ) , ( i m j ) ) ) ) |
23 |
16 16 22
|
mpoeq123dv |
|- ( ( n = N /\ r = R ) -> ( k e. n , l e. n |-> ( i e. n , j e. n |-> if ( i = k , if ( j = l , s , ( 0g ` r ) ) , ( i m j ) ) ) ) = ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , s , .0. ) , ( i m j ) ) ) ) ) |
24 |
13 15 23
|
mpoeq123dv |
|- ( ( n = N /\ r = R ) -> ( m e. ( Base ` ( n Mat r ) ) , s e. ( Base ` r ) |-> ( k e. n , l e. n |-> ( i e. n , j e. n |-> if ( i = k , if ( j = l , s , ( 0g ` r ) ) , ( i m j ) ) ) ) ) = ( m e. B , s e. ( Base ` R ) |-> ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , s , .0. ) , ( i m j ) ) ) ) ) ) |
25 |
|
df-marrep |
|- matRRep = ( n e. _V , r e. _V |-> ( m e. ( Base ` ( n Mat r ) ) , s e. ( Base ` r ) |-> ( k e. n , l e. n |-> ( i e. n , j e. n |-> if ( i = k , if ( j = l , s , ( 0g ` r ) ) , ( i m j ) ) ) ) ) ) |
26 |
24 25
|
ovmpoga |
|- ( ( N e. _V /\ R e. _V /\ ( m e. B , s e. ( Base ` R ) |-> ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , s , .0. ) , ( i m j ) ) ) ) ) e. _V ) -> ( N matRRep R ) = ( m e. B , s e. ( Base ` R ) |-> ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , s , .0. ) , ( i m j ) ) ) ) ) ) |
27 |
8 26
|
mpd3an3 |
|- ( ( N e. _V /\ R e. _V ) -> ( N matRRep R ) = ( m e. B , s e. ( Base ` R ) |-> ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , s , .0. ) , ( i m j ) ) ) ) ) ) |
28 |
25
|
mpondm0 |
|- ( -. ( N e. _V /\ R e. _V ) -> ( N matRRep R ) = (/) ) |
29 |
|
matbas0pc |
|- ( -. ( N e. _V /\ R e. _V ) -> ( Base ` ( N Mat R ) ) = (/) ) |
30 |
12 29
|
eqtrid |
|- ( -. ( N e. _V /\ R e. _V ) -> B = (/) ) |
31 |
30
|
orcd |
|- ( -. ( N e. _V /\ R e. _V ) -> ( B = (/) \/ ( Base ` R ) = (/) ) ) |
32 |
|
0mpo0 |
|- ( ( B = (/) \/ ( Base ` R ) = (/) ) -> ( m e. B , s e. ( Base ` R ) |-> ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , s , .0. ) , ( i m j ) ) ) ) ) = (/) ) |
33 |
31 32
|
syl |
|- ( -. ( N e. _V /\ R e. _V ) -> ( m e. B , s e. ( Base ` R ) |-> ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , s , .0. ) , ( i m j ) ) ) ) ) = (/) ) |
34 |
28 33
|
eqtr4d |
|- ( -. ( N e. _V /\ R e. _V ) -> ( N matRRep R ) = ( m e. B , s e. ( Base ` R ) |-> ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , s , .0. ) , ( i m j ) ) ) ) ) ) |
35 |
27 34
|
pm2.61i |
|- ( N matRRep R ) = ( m e. B , s e. ( Base ` R ) |-> ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , s , .0. ) , ( i m j ) ) ) ) ) |
36 |
3 35
|
eqtri |
|- Q = ( m e. B , s e. ( Base ` R ) |-> ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , s , .0. ) , ( i m j ) ) ) ) ) |