Metamath Proof Explorer


Theorem matbas0pc

Description: There is no matrix with a proper class either as dimension or as underlying ring. (Contributed by AV, 28-Dec-2018)

Ref Expression
Assertion matbas0pc ¬NVRVBaseNMatR=

Proof

Step Hyp Ref Expression
1 df-mat Mat=nFin,rVrfreeLModn×nsSetndxrmaMulnnn
2 1 reldmmpo ReldomMat
3 2 ovprc ¬NVRVNMatR=
4 3 fveq2d ¬NVRVBaseNMatR=Base
5 base0 =Base
6 4 5 eqtr4di ¬NVRVBaseNMatR=