Metamath Proof Explorer


Theorem matbas0

Description: There is no matrix for a not finite dimension or a proper class as the underlying ring. (Contributed by AV, 28-Dec-2018)

Ref Expression
Assertion matbas0 ¬NFinRVBaseNMatR=

Proof

Step Hyp Ref Expression
1 df-mat Mat=nFin,rVrfreeLModn×nsSetndxrmaMulnnn
2 1 mpondm0 ¬NFinRVNMatR=
3 2 fveq2d ¬NFinRVBaseNMatR=Base
4 base0 =Base
5 3 4 eqtr4di ¬NFinRVBaseNMatR=