Metamath Proof Explorer


Theorem marrepval

Description: Third substitution for the definition of the matrix row replacement function. (Contributed by AV, 12-Feb-2019)

Ref Expression
Hypotheses marrepfval.a A = N Mat R
marrepfval.b B = Base A
marrepfval.q Q = N matRRep R
marrepfval.z 0 ˙ = 0 R
Assertion marrepval M B S Base R K N L N K M Q S L = i N , j N if i = K if j = L S 0 ˙ i M j

Proof

Step Hyp Ref Expression
1 marrepfval.a A = N Mat R
2 marrepfval.b B = Base A
3 marrepfval.q Q = N matRRep R
4 marrepfval.z 0 ˙ = 0 R
5 1 2 3 4 marrepval0 M B S Base R M Q S = k N , l N i N , j N if i = k if j = l S 0 ˙ i M j
6 5 adantr M B S Base R K N L N M Q S = k N , l N i N , j N if i = k if j = l S 0 ˙ i M j
7 simprl M B S Base R K N L N K N
8 simplrr M B S Base R K N L N k = K L N
9 1 2 matrcl M B N Fin R V
10 9 simpld M B N Fin
11 10 10 jca M B N Fin N Fin
12 11 ad3antrrr M B S Base R K N L N k = K l = L N Fin N Fin
13 mpoexga N Fin N Fin i N , j N if i = k if j = l S 0 ˙ i M j V
14 12 13 syl M B S Base R K N L N k = K l = L i N , j N if i = k if j = l S 0 ˙ i M j V
15 eqeq2 k = K i = k i = K
16 15 adantr k = K l = L i = k i = K
17 eqeq2 l = L j = l j = L
18 17 ifbid l = L if j = l S 0 ˙ = if j = L S 0 ˙
19 18 adantl k = K l = L if j = l S 0 ˙ = if j = L S 0 ˙
20 16 19 ifbieq1d k = K l = L if i = k if j = l S 0 ˙ i M j = if i = K if j = L S 0 ˙ i M j
21 20 mpoeq3dv k = K l = L i N , j N if i = k if j = l S 0 ˙ i M j = i N , j N if i = K if j = L S 0 ˙ i M j
22 21 adantl M B S Base R K N L N k = K l = L i N , j N if i = k if j = l S 0 ˙ i M j = i N , j N if i = K if j = L S 0 ˙ i M j
23 7 8 14 22 ovmpodv2 M B S Base R K N L N M Q S = k N , l N i N , j N if i = k if j = l S 0 ˙ i M j K M Q S L = i N , j N if i = K if j = L S 0 ˙ i M j
24 6 23 mpd M B S Base R K N L N K M Q S L = i N , j N if i = K if j = L S 0 ˙ i M j