Metamath Proof Explorer


Theorem ovmpodv2

Description: Alternate deduction version of ovmpo , suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017)

Ref Expression
Hypotheses ovmpodv2.1 φAC
ovmpodv2.2 φx=ABD
ovmpodv2.3 φx=Ay=BRV
ovmpodv2.4 φx=Ay=BR=S
Assertion ovmpodv2 φF=xC,yDRAFB=S

Proof

Step Hyp Ref Expression
1 ovmpodv2.1 φAC
2 ovmpodv2.2 φx=ABD
3 ovmpodv2.3 φx=Ay=BRV
4 ovmpodv2.4 φx=Ay=BR=S
5 eqidd φxC,yDR=xC,yDR
6 4 eqeq2d φx=Ay=BAxC,yDRB=RAxC,yDRB=S
7 6 biimpd φx=Ay=BAxC,yDRB=RAxC,yDRB=S
8 nfmpo1 _xxC,yDR
9 nfcv _xA
10 nfcv _xB
11 9 8 10 nfov _xAxC,yDRB
12 11 nfeq1 xAxC,yDRB=S
13 nfmpo2 _yxC,yDR
14 nfcv _yA
15 nfcv _yB
16 14 13 15 nfov _yAxC,yDRB
17 16 nfeq1 yAxC,yDRB=S
18 1 2 3 7 8 12 13 17 ovmpodf φxC,yDR=xC,yDRAxC,yDRB=S
19 5 18 mpd φAxC,yDRB=S
20 oveq F=xC,yDRAFB=AxC,yDRB
21 20 eqeq1d F=xC,yDRAFB=SAxC,yDRB=S
22 19 21 syl5ibrcom φF=xC,yDRAFB=S