| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovmpodv2.1 |
|- ( ph -> A e. C ) |
| 2 |
|
ovmpodv2.2 |
|- ( ( ph /\ x = A ) -> B e. D ) |
| 3 |
|
ovmpodv2.3 |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> R e. V ) |
| 4 |
|
ovmpodv2.4 |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> R = S ) |
| 5 |
|
eqidd |
|- ( ph -> ( x e. C , y e. D |-> R ) = ( x e. C , y e. D |-> R ) ) |
| 6 |
4
|
eqeq2d |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ( A ( x e. C , y e. D |-> R ) B ) = R <-> ( A ( x e. C , y e. D |-> R ) B ) = S ) ) |
| 7 |
6
|
biimpd |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ( A ( x e. C , y e. D |-> R ) B ) = R -> ( A ( x e. C , y e. D |-> R ) B ) = S ) ) |
| 8 |
|
nfmpo1 |
|- F/_ x ( x e. C , y e. D |-> R ) |
| 9 |
|
nfcv |
|- F/_ x A |
| 10 |
|
nfcv |
|- F/_ x B |
| 11 |
9 8 10
|
nfov |
|- F/_ x ( A ( x e. C , y e. D |-> R ) B ) |
| 12 |
11
|
nfeq1 |
|- F/ x ( A ( x e. C , y e. D |-> R ) B ) = S |
| 13 |
|
nfmpo2 |
|- F/_ y ( x e. C , y e. D |-> R ) |
| 14 |
|
nfcv |
|- F/_ y A |
| 15 |
|
nfcv |
|- F/_ y B |
| 16 |
14 13 15
|
nfov |
|- F/_ y ( A ( x e. C , y e. D |-> R ) B ) |
| 17 |
16
|
nfeq1 |
|- F/ y ( A ( x e. C , y e. D |-> R ) B ) = S |
| 18 |
1 2 3 7 8 12 13 17
|
ovmpodf |
|- ( ph -> ( ( x e. C , y e. D |-> R ) = ( x e. C , y e. D |-> R ) -> ( A ( x e. C , y e. D |-> R ) B ) = S ) ) |
| 19 |
5 18
|
mpd |
|- ( ph -> ( A ( x e. C , y e. D |-> R ) B ) = S ) |
| 20 |
|
oveq |
|- ( F = ( x e. C , y e. D |-> R ) -> ( A F B ) = ( A ( x e. C , y e. D |-> R ) B ) ) |
| 21 |
20
|
eqeq1d |
|- ( F = ( x e. C , y e. D |-> R ) -> ( ( A F B ) = S <-> ( A ( x e. C , y e. D |-> R ) B ) = S ) ) |
| 22 |
19 21
|
syl5ibrcom |
|- ( ph -> ( F = ( x e. C , y e. D |-> R ) -> ( A F B ) = S ) ) |