Metamath Proof Explorer


Theorem marrepeval

Description: An entry of a matrix with a replaced row. (Contributed by AV, 12-Feb-2019)

Ref Expression
Hypotheses marrepfval.a A=NMatR
marrepfval.b B=BaseA
marrepfval.q Q=NmatRRepR
marrepfval.z 0˙=0R
Assertion marrepeval MBSBaseRKNLNINJNIKMQSLJ=ifI=KifJ=LS0˙IMJ

Proof

Step Hyp Ref Expression
1 marrepfval.a A=NMatR
2 marrepfval.b B=BaseA
3 marrepfval.q Q=NmatRRepR
4 marrepfval.z 0˙=0R
5 1 2 3 4 marrepval MBSBaseRKNLNKMQSL=iN,jNifi=Kifj=LS0˙iMj
6 5 3adant3 MBSBaseRKNLNINJNKMQSL=iN,jNifi=Kifj=LS0˙iMj
7 simp3l MBSBaseRKNLNINJNIN
8 simpl3r MBSBaseRKNLNINJNi=IJN
9 4 fvexi 0˙V
10 ifexg SBaseR0˙Vifj=LS0˙V
11 9 10 mpan2 SBaseRifj=LS0˙V
12 ovexd SBaseRiMjV
13 11 12 ifcld SBaseRifi=Kifj=LS0˙iMjV
14 13 adantl MBSBaseRifi=Kifj=LS0˙iMjV
15 14 3ad2ant1 MBSBaseRKNLNINJNifi=Kifj=LS0˙iMjV
16 15 adantr MBSBaseRKNLNINJNi=Ij=Jifi=Kifj=LS0˙iMjV
17 eqeq1 i=Ii=KI=K
18 17 adantr i=Ij=Ji=KI=K
19 eqeq1 j=Jj=LJ=L
20 19 ifbid j=Jifj=LS0˙=ifJ=LS0˙
21 20 adantl i=Ij=Jifj=LS0˙=ifJ=LS0˙
22 oveq12 i=Ij=JiMj=IMJ
23 18 21 22 ifbieq12d i=Ij=Jifi=Kifj=LS0˙iMj=ifI=KifJ=LS0˙IMJ
24 23 adantl MBSBaseRKNLNINJNi=Ij=Jifi=Kifj=LS0˙iMj=ifI=KifJ=LS0˙IMJ
25 7 8 16 24 ovmpodv2 MBSBaseRKNLNINJNKMQSL=iN,jNifi=Kifj=LS0˙iMjIKMQSLJ=ifI=KifJ=LS0˙IMJ
26 6 25 mpd MBSBaseRKNLNINJNIKMQSLJ=ifI=KifJ=LS0˙IMJ