Metamath Proof Explorer


Theorem marrepcl

Description: Closure of the row replacement function for square matrices. (Contributed by AV, 13-Feb-2019)

Ref Expression
Hypotheses marrepcl.a A=NMatR
marrepcl.b B=BaseA
Assertion marrepcl RRingMBSBaseRKNLNKMNmatRRepRSLB

Proof

Step Hyp Ref Expression
1 marrepcl.a A=NMatR
2 marrepcl.b B=BaseA
3 eqid NmatRRepR=NmatRRepR
4 eqid 0R=0R
5 1 2 3 4 marrepval MBSBaseRKNLNKMNmatRRepRSL=iN,jNifi=Kifj=LS0RiMj
6 5 3adantl1 RRingMBSBaseRKNLNKMNmatRRepRSL=iN,jNifi=Kifj=LS0RiMj
7 eqid BaseR=BaseR
8 1 2 matrcl MBNFinRV
9 8 simpld MBNFin
10 9 3ad2ant2 RRingMBSBaseRNFin
11 10 adantr RRingMBSBaseRKNLNNFin
12 simpl1 RRingMBSBaseRKNLNRRing
13 simp3 RRingMBSBaseRSBaseR
14 7 4 ring0cl RRing0RBaseR
15 14 3ad2ant1 RRingMBSBaseR0RBaseR
16 13 15 ifcld RRingMBSBaseRifj=LS0RBaseR
17 16 adantr RRingMBSBaseRKNLNifj=LS0RBaseR
18 17 3ad2ant1 RRingMBSBaseRKNLNiNjNifj=LS0RBaseR
19 simp2 RRingMBSBaseRKNLNiNjNiN
20 simp3 RRingMBSBaseRKNLNiNjNjN
21 2 eleq2i MBMBaseA
22 21 biimpi MBMBaseA
23 22 3ad2ant2 RRingMBSBaseRMBaseA
24 23 adantr RRingMBSBaseRKNLNMBaseA
25 24 3ad2ant1 RRingMBSBaseRKNLNiNjNMBaseA
26 1 7 matecl iNjNMBaseAiMjBaseR
27 19 20 25 26 syl3anc RRingMBSBaseRKNLNiNjNiMjBaseR
28 18 27 ifcld RRingMBSBaseRKNLNiNjNifi=Kifj=LS0RiMjBaseR
29 1 7 2 11 12 28 matbas2d RRingMBSBaseRKNLNiN,jNifi=Kifj=LS0RiMjB
30 6 29 eqeltrd RRingMBSBaseRKNLNKMNmatRRepRSLB