Metamath Proof Explorer


Theorem matbas2d

Description: The base set of the matrix ring as a mapping operation. (Contributed by Stefan O'Rear, 11-Jul-2018)

Ref Expression
Hypotheses matbas2.a A=NMatR
matbas2.k K=BaseR
matbas2i.b B=BaseA
matbas2d.n φNFin
matbas2d.r φRV
matbas2d.c φxNyNCK
Assertion matbas2d φxN,yNCB

Proof

Step Hyp Ref Expression
1 matbas2.a A=NMatR
2 matbas2.k K=BaseR
3 matbas2i.b B=BaseA
4 matbas2d.n φNFin
5 matbas2d.r φRV
6 matbas2d.c φxNyNCK
7 6 3expb φxNyNCK
8 7 ralrimivva φxNyNCK
9 eqid xN,yNC=xN,yNC
10 9 fmpo xNyNCKxN,yNC:N×NK
11 8 10 sylib φxN,yNC:N×NK
12 1 2 matbas2 NFinRVKN×N=BaseA
13 4 5 12 syl2anc φKN×N=BaseA
14 3 13 eqtr4id φB=KN×N
15 14 eleq2d φxN,yNCBxN,yNCKN×N
16 2 fvexi KV
17 4 4 xpexd φN×NV
18 elmapg KVN×NVxN,yNCKN×NxN,yNC:N×NK
19 16 17 18 sylancr φxN,yNCKN×NxN,yNC:N×NK
20 15 19 bitrd φxN,yNCBxN,yNC:N×NK
21 11 20 mpbird φxN,yNCB