Metamath Proof Explorer


Theorem eqmat

Description: Two square matrices of the same dimension are equal if they have the same entries. (Contributed by AV, 25-Sep-2019)

Ref Expression
Hypotheses eqmat.a A=NMatR
eqmat.b B=BaseA
Assertion eqmat XBYBX=YiNjNiXj=iYj

Proof

Step Hyp Ref Expression
1 eqmat.a A=NMatR
2 eqmat.b B=BaseA
3 eqid BaseR=BaseR
4 1 3 2 matbas2i XBXBaseRN×N
5 elmapfn XBaseRN×NXFnN×N
6 4 5 syl XBXFnN×N
7 1 3 2 matbas2i YBYBaseRN×N
8 elmapfn YBaseRN×NYFnN×N
9 7 8 syl YBYFnN×N
10 eqfnov2 XFnN×NYFnN×NX=YiNjNiXj=iYj
11 6 9 10 syl2an XBYBX=YiNjNiXj=iYj