Metamath Proof Explorer


Theorem eqfnov2

Description: Two operators with the same domain are equal iff their values at each point in the domain are equal. (Contributed by Jeff Madsen, 7-Jun-2010)

Ref Expression
Assertion eqfnov2 FFnA×BGFnA×BF=GxAyBxFy=xGy

Proof

Step Hyp Ref Expression
1 eqfnov FFnA×BGFnA×BF=GA×B=A×BxAyBxFy=xGy
2 simpr A×B=A×BxAyBxFy=xGyxAyBxFy=xGy
3 eqidd xAyBxFy=xGyA×B=A×B
4 3 ancri xAyBxFy=xGyA×B=A×BxAyBxFy=xGy
5 2 4 impbii A×B=A×BxAyBxFy=xGyxAyBxFy=xGy
6 1 5 bitrdi FFnA×BGFnA×BF=GxAyBxFy=xGy