Metamath Proof Explorer


Theorem eqfnov

Description: Equality of two operations is determined by their values. (Contributed by NM, 1-Sep-2005)

Ref Expression
Assertion eqfnov FFnA×BGFnC×DF=GA×B=C×DxAyBxFy=xGy

Proof

Step Hyp Ref Expression
1 eqfnfv2 FFnA×BGFnC×DF=GA×B=C×DzA×BFz=Gz
2 fveq2 z=xyFz=Fxy
3 fveq2 z=xyGz=Gxy
4 2 3 eqeq12d z=xyFz=GzFxy=Gxy
5 df-ov xFy=Fxy
6 df-ov xGy=Gxy
7 5 6 eqeq12i xFy=xGyFxy=Gxy
8 4 7 bitr4di z=xyFz=GzxFy=xGy
9 8 ralxp zA×BFz=GzxAyBxFy=xGy
10 9 anbi2i A×B=C×DzA×BFz=GzA×B=C×DxAyBxFy=xGy
11 1 10 bitrdi FFnA×BGFnC×DF=GA×B=C×DxAyBxFy=xGy