Metamath Proof Explorer


Theorem smadiadetlem1

Description: Lemma 1 for smadiadet : A summand of the determinant of a matrix belongs to the underlying ring. (Contributed by AV, 1-Jan-2019)

Ref Expression
Hypotheses marep01ma.a A = N Mat R
marep01ma.b B = Base A
marep01ma.r R CRing
marep01ma.0 0 ˙ = 0 R
marep01ma.1 1 ˙ = 1 R
smadiadetlem.p P = Base SymGrp N
smadiadetlem.g G = mulGrp R
madetminlem.y Y = ℤRHom R
madetminlem.s S = pmSgn N
madetminlem.t · ˙ = R
Assertion smadiadetlem1 M B K N p P Y S p R G n N n i N , j N if i = K if j = K 1 ˙ 0 ˙ i M j p n Base R

Proof

Step Hyp Ref Expression
1 marep01ma.a A = N Mat R
2 marep01ma.b B = Base A
3 marep01ma.r R CRing
4 marep01ma.0 0 ˙ = 0 R
5 marep01ma.1 1 ˙ = 1 R
6 smadiadetlem.p P = Base SymGrp N
7 smadiadetlem.g G = mulGrp R
8 madetminlem.y Y = ℤRHom R
9 madetminlem.s S = pmSgn N
10 madetminlem.t · ˙ = R
11 1 2 3 4 5 marep01ma M B i N , j N if i = K if j = K 1 ˙ 0 ˙ i M j B
12 11 ad2antrr M B K N p P i N , j N if i = K if j = K 1 ˙ 0 ˙ i M j B
13 simpr M B K N p P p P
14 6 9 8 1 2 7 madetsmelbas2 R CRing i N , j N if i = K if j = K 1 ˙ 0 ˙ i M j B p P Y S p R G n N n i N , j N if i = K if j = K 1 ˙ 0 ˙ i M j p n Base R
15 3 12 13 14 mp3an2i M B K N p P Y S p R G n N n i N , j N if i = K if j = K 1 ˙ 0 ˙ i M j p n Base R