Metamath Proof Explorer


Theorem smadiadetlem1

Description: Lemma 1 for smadiadet : A summand of the determinant of a matrix belongs to the underlying ring. (Contributed by AV, 1-Jan-2019)

Ref Expression
Hypotheses marep01ma.a A=NMatR
marep01ma.b B=BaseA
marep01ma.r RCRing
marep01ma.0 0˙=0R
marep01ma.1 1˙=1R
smadiadetlem.p P=BaseSymGrpN
smadiadetlem.g G=mulGrpR
madetminlem.y Y=ℤRHomR
madetminlem.s S=pmSgnN
madetminlem.t ·˙=R
Assertion smadiadetlem1 MBKNpPYSpRGnNniN,jNifi=Kifj=K1˙0˙iMjpnBaseR

Proof

Step Hyp Ref Expression
1 marep01ma.a A=NMatR
2 marep01ma.b B=BaseA
3 marep01ma.r RCRing
4 marep01ma.0 0˙=0R
5 marep01ma.1 1˙=1R
6 smadiadetlem.p P=BaseSymGrpN
7 smadiadetlem.g G=mulGrpR
8 madetminlem.y Y=ℤRHomR
9 madetminlem.s S=pmSgnN
10 madetminlem.t ·˙=R
11 1 2 3 4 5 marep01ma MBiN,jNifi=Kifj=K1˙0˙iMjB
12 11 ad2antrr MBKNpPiN,jNifi=Kifj=K1˙0˙iMjB
13 simpr MBKNpPpP
14 6 9 8 1 2 7 madetsmelbas2 RCRingiN,jNifi=Kifj=K1˙0˙iMjBpPYSpRGnNniN,jNifi=Kifj=K1˙0˙iMjpnBaseR
15 3 12 13 14 mp3an2i MBKNpPYSpRGnNniN,jNifi=Kifj=K1˙0˙iMjpnBaseR