Step |
Hyp |
Ref |
Expression |
1 |
|
marep01ma.a |
|- A = ( N Mat R ) |
2 |
|
marep01ma.b |
|- B = ( Base ` A ) |
3 |
|
marep01ma.r |
|- R e. CRing |
4 |
|
marep01ma.0 |
|- .0. = ( 0g ` R ) |
5 |
|
marep01ma.1 |
|- .1. = ( 1r ` R ) |
6 |
|
smadiadetlem.p |
|- P = ( Base ` ( SymGrp ` N ) ) |
7 |
|
smadiadetlem.g |
|- G = ( mulGrp ` R ) |
8 |
|
madetminlem.y |
|- Y = ( ZRHom ` R ) |
9 |
|
madetminlem.s |
|- S = ( pmSgn ` N ) |
10 |
|
madetminlem.t |
|- .x. = ( .r ` R ) |
11 |
1 2 3 4 5
|
marep01ma |
|- ( M e. B -> ( i e. N , j e. N |-> if ( i = K , if ( j = K , .1. , .0. ) , ( i M j ) ) ) e. B ) |
12 |
11
|
ad2antrr |
|- ( ( ( M e. B /\ K e. N ) /\ p e. P ) -> ( i e. N , j e. N |-> if ( i = K , if ( j = K , .1. , .0. ) , ( i M j ) ) ) e. B ) |
13 |
|
simpr |
|- ( ( ( M e. B /\ K e. N ) /\ p e. P ) -> p e. P ) |
14 |
6 9 8 1 2 7
|
madetsmelbas2 |
|- ( ( R e. CRing /\ ( i e. N , j e. N |-> if ( i = K , if ( j = K , .1. , .0. ) , ( i M j ) ) ) e. B /\ p e. P ) -> ( ( ( Y o. S ) ` p ) ( .r ` R ) ( G gsum ( n e. N |-> ( n ( i e. N , j e. N |-> if ( i = K , if ( j = K , .1. , .0. ) , ( i M j ) ) ) ( p ` n ) ) ) ) ) e. ( Base ` R ) ) |
15 |
3 12 13 14
|
mp3an2i |
|- ( ( ( M e. B /\ K e. N ) /\ p e. P ) -> ( ( ( Y o. S ) ` p ) ( .r ` R ) ( G gsum ( n e. N |-> ( n ( i e. N , j e. N |-> if ( i = K , if ( j = K , .1. , .0. ) , ( i M j ) ) ) ( p ` n ) ) ) ) ) e. ( Base ` R ) ) |