Metamath Proof Explorer


Theorem smadiadetlem1a

Description: Lemma 1a for smadiadet : The summands of the Leibniz' formula vanish for all permutations fixing the index of the row containing the 0's and the 1 to the column with the 1. (Contributed by AV, 3-Jan-2019)

Ref Expression
Hypotheses marep01ma.a A = N Mat R
marep01ma.b B = Base A
marep01ma.r R CRing
marep01ma.0 0 ˙ = 0 R
marep01ma.1 1 ˙ = 1 R
smadiadetlem.p P = Base SymGrp N
smadiadetlem.g G = mulGrp R
madetminlem.y Y = ℤRHom R
madetminlem.s S = pmSgn N
madetminlem.t · ˙ = R
Assertion smadiadetlem1a M B K N L N R p P q P | q K = L Y S p · ˙ G n N n i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j p n = 0 ˙

Proof

Step Hyp Ref Expression
1 marep01ma.a A = N Mat R
2 marep01ma.b B = Base A
3 marep01ma.r R CRing
4 marep01ma.0 0 ˙ = 0 R
5 marep01ma.1 1 ˙ = 1 R
6 smadiadetlem.p P = Base SymGrp N
7 smadiadetlem.g G = mulGrp R
8 madetminlem.y Y = ℤRHom R
9 madetminlem.s S = pmSgn N
10 madetminlem.t · ˙ = R
11 1 2 3 4 5 6 7 smadiadetlem0 M B K N L N p P q P | q K = L G n N n i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j p n = 0 ˙
12 11 imp M B K N L N p P q P | q K = L G n N n i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j p n = 0 ˙
13 12 oveq2d M B K N L N p P q P | q K = L Y S p · ˙ G n N n i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j p n = Y S p · ˙ 0 ˙
14 13 mpteq2dva M B K N L N p P q P | q K = L Y S p · ˙ G n N n i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j p n = p P q P | q K = L Y S p · ˙ 0 ˙
15 14 oveq2d M B K N L N R p P q P | q K = L Y S p · ˙ G n N n i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j p n = R p P q P | q K = L Y S p · ˙ 0 ˙
16 crngring R CRing R Ring
17 3 16 mp1i M B K N L N p P q P | q K = L R Ring
18 1 2 matrcl M B N Fin R V
19 18 simpld M B N Fin
20 19 3ad2ant1 M B K N L N N Fin
21 20 adantr M B K N L N p P q P | q K = L N Fin
22 eldifi p P q P | q K = L p P
23 22 adantl M B K N L N p P q P | q K = L p P
24 6 9 8 zrhcopsgnelbas R Ring N Fin p P Y S p Base R
25 17 21 23 24 syl3anc M B K N L N p P q P | q K = L Y S p Base R
26 eqid Base R = Base R
27 26 10 4 ringrz R Ring Y S p Base R Y S p · ˙ 0 ˙ = 0 ˙
28 17 25 27 syl2anc M B K N L N p P q P | q K = L Y S p · ˙ 0 ˙ = 0 ˙
29 28 mpteq2dva M B K N L N p P q P | q K = L Y S p · ˙ 0 ˙ = p P q P | q K = L 0 ˙
30 29 oveq2d M B K N L N R p P q P | q K = L Y S p · ˙ 0 ˙ = R p P q P | q K = L 0 ˙
31 ringmnd R Ring R Mnd
32 3 16 31 mp2b R Mnd
33 6 fvexi P V
34 difexg P V P q P | q K = L V
35 33 34 mp1i M B K N L N P q P | q K = L V
36 4 gsumz R Mnd P q P | q K = L V R p P q P | q K = L 0 ˙ = 0 ˙
37 32 35 36 sylancr M B K N L N R p P q P | q K = L 0 ˙ = 0 ˙
38 15 30 37 3eqtrd M B K N L N R p P q P | q K = L Y S p · ˙ G n N n i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j p n = 0 ˙