Metamath Proof Explorer


Theorem smadiadetlem0

Description: Lemma 0 for smadiadet : The products of the Leibniz' formula vanish for all permutations fixing the index of the row containing the 0's and the 1 to the column with the 1. (Contributed by AV, 3-Jan-2019)

Ref Expression
Hypotheses marep01ma.a A = N Mat R
marep01ma.b B = Base A
marep01ma.r R CRing
marep01ma.0 0 ˙ = 0 R
marep01ma.1 1 ˙ = 1 R
smadiadetlem.p P = Base SymGrp N
smadiadetlem.g G = mulGrp R
Assertion smadiadetlem0 M B K N L N Q P q P | q K = L G n N n i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j Q n = 0 ˙

Proof

Step Hyp Ref Expression
1 marep01ma.a A = N Mat R
2 marep01ma.b B = Base A
3 marep01ma.r R CRing
4 marep01ma.0 0 ˙ = 0 R
5 marep01ma.1 1 ˙ = 1 R
6 smadiadetlem.p P = Base SymGrp N
7 smadiadetlem.g G = mulGrp R
8 3 a1i M B K N L N Q P q P | q K = L R CRing
9 1 2 matrcl M B N Fin R V
10 9 simpld M B N Fin
11 10 3ad2ant1 M B K N L N N Fin
12 11 adantr M B K N L N Q P q P | q K = L N Fin
13 crngring R CRing R Ring
14 3 13 mp1i M B K N L N Q P q P | q K = L R Ring
15 eldifi Q P q P | q K = L Q P
16 15 adantl M B K N L N Q P q P | q K = L Q P
17 1 2 3 4 5 marep01ma M B i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j B
18 17 3ad2ant1 M B K N L N i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j B
19 18 adantr M B K N L N Q P q P | q K = L i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j B
20 1 2 6 matepm2cl R Ring Q P i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j B m N m i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j Q m Base R
21 14 16 19 20 syl3anc M B K N L N Q P q P | q K = L m N m i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j Q m Base R
22 id m = n m = n
23 fveq2 m = n Q m = Q n
24 22 23 oveq12d m = n m i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j Q m = n i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j Q n
25 24 eleq1d m = n m i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j Q m Base R n i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j Q n Base R
26 25 rspccv m N m i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j Q m Base R n N n i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j Q n Base R
27 21 26 syl M B K N L N Q P q P | q K = L n N n i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j Q n Base R
28 27 imp M B K N L N Q P q P | q K = L n N n i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j Q n Base R
29 id n = m n = m
30 fveq2 n = m Q n = Q m
31 29 30 oveq12d n = m n i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j Q n = m i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j Q m
32 31 adantl M B K N L N Q P q P | q K = L n = m n i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j Q n = m i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j Q m
33 6 4 5 symgmatr01 K N L N Q P q P | q K = L m N m i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j Q m = 0 ˙
34 33 3adant1 M B K N L N Q P q P | q K = L m N m i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j Q m = 0 ˙
35 34 imp M B K N L N Q P q P | q K = L m N m i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j Q m = 0 ˙
36 7 4 8 12 28 32 35 gsummgp0 M B K N L N Q P q P | q K = L G n N n i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j Q n = 0 ˙
37 36 ex M B K N L N Q P q P | q K = L G n N n i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j Q n = 0 ˙