Metamath Proof Explorer


Theorem symgmatr01

Description: Applying a permutation that does not fix a certain element of a set to a second element to an index of a matrix a row with 0's and a 1. (Contributed by AV, 3-Jan-2019)

Ref Expression
Hypotheses symgmatr01.p P = Base SymGrp N
symgmatr01.0 0 ˙ = 0 R
symgmatr01.1 1 ˙ = 1 R
Assertion symgmatr01 K N L N Q P q P | q K = L k N k i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j Q k = 0 ˙

Proof

Step Hyp Ref Expression
1 symgmatr01.p P = Base SymGrp N
2 symgmatr01.0 0 ˙ = 0 R
3 symgmatr01.1 1 ˙ = 1 R
4 1 symgmatr01lem K N L N Q P q P | q K = L k N if k = K if Q k = L 1 ˙ 0 ˙ k M Q k = 0 ˙
5 4 imp K N L N Q P q P | q K = L k N if k = K if Q k = L 1 ˙ 0 ˙ k M Q k = 0 ˙
6 eqidd K N L N Q P q P | q K = L k N i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j = i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j
7 eqeq1 i = k i = K k = K
8 7 adantr i = k j = Q k i = K k = K
9 eqeq1 j = Q k j = L Q k = L
10 9 adantl i = k j = Q k j = L Q k = L
11 10 ifbid i = k j = Q k if j = L 1 ˙ 0 ˙ = if Q k = L 1 ˙ 0 ˙
12 oveq12 i = k j = Q k i M j = k M Q k
13 8 11 12 ifbieq12d i = k j = Q k if i = K if j = L 1 ˙ 0 ˙ i M j = if k = K if Q k = L 1 ˙ 0 ˙ k M Q k
14 13 adantl K N L N Q P q P | q K = L k N i = k j = Q k if i = K if j = L 1 ˙ 0 ˙ i M j = if k = K if Q k = L 1 ˙ 0 ˙ k M Q k
15 simpr K N L N Q P q P | q K = L k N k N
16 eldifi Q P q P | q K = L Q P
17 eqid SymGrp N = SymGrp N
18 17 1 symgfv Q P k N Q k N
19 18 ex Q P k N Q k N
20 16 19 syl Q P q P | q K = L k N Q k N
21 20 adantl K N L N Q P q P | q K = L k N Q k N
22 21 imp K N L N Q P q P | q K = L k N Q k N
23 3 fvexi 1 ˙ V
24 2 fvexi 0 ˙ V
25 23 24 ifex if Q k = L 1 ˙ 0 ˙ V
26 ovex k M Q k V
27 25 26 ifex if k = K if Q k = L 1 ˙ 0 ˙ k M Q k V
28 27 a1i K N L N Q P q P | q K = L k N if k = K if Q k = L 1 ˙ 0 ˙ k M Q k V
29 6 14 15 22 28 ovmpod K N L N Q P q P | q K = L k N k i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j Q k = if k = K if Q k = L 1 ˙ 0 ˙ k M Q k
30 29 eqeq1d K N L N Q P q P | q K = L k N k i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j Q k = 0 ˙ if k = K if Q k = L 1 ˙ 0 ˙ k M Q k = 0 ˙
31 30 rexbidva K N L N Q P q P | q K = L k N k i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j Q k = 0 ˙ k N if k = K if Q k = L 1 ˙ 0 ˙ k M Q k = 0 ˙
32 5 31 mpbird K N L N Q P q P | q K = L k N k i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j Q k = 0 ˙
33 32 ex K N L N Q P q P | q K = L k N k i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j Q k = 0 ˙