Metamath Proof Explorer


Theorem symgmatr01lem

Description: Lemma for symgmatr01 . (Contributed by AV, 3-Jan-2019)

Ref Expression
Hypothesis symgmatr01.p P = Base SymGrp N
Assertion symgmatr01lem K N L N Q P q P | q K = L k N if k = K if Q k = L A B k M Q k = B

Proof

Step Hyp Ref Expression
1 symgmatr01.p P = Base SymGrp N
2 simpll K N L N Q P q P | q K = L K N
3 eqeq1 k = K k = K K = K
4 fveq2 k = K Q k = Q K
5 4 eqeq1d k = K Q k = L Q K = L
6 5 ifbid k = K if Q k = L A B = if Q K = L A B
7 id k = K k = K
8 7 4 oveq12d k = K k M Q k = K M Q K
9 3 6 8 ifbieq12d k = K if k = K if Q k = L A B k M Q k = if K = K if Q K = L A B K M Q K
10 9 eqeq1d k = K if k = K if Q k = L A B k M Q k = B if K = K if Q K = L A B K M Q K = B
11 10 adantl K N L N Q P q P | q K = L k = K if k = K if Q k = L A B k M Q k = B if K = K if Q K = L A B K M Q K = B
12 eqidd K N L N Q P q P | q K = L K = K
13 12 iftrued K N L N Q P q P | q K = L if K = K if Q K = L A B K M Q K = if Q K = L A B
14 eldif Q P q P | q K = L Q P ¬ Q q P | q K = L
15 ianor ¬ Q P Q K = L ¬ Q P ¬ Q K = L
16 fveq1 q = Q q K = Q K
17 16 eqeq1d q = Q q K = L Q K = L
18 17 elrab Q q P | q K = L Q P Q K = L
19 15 18 xchnxbir ¬ Q q P | q K = L ¬ Q P ¬ Q K = L
20 pm2.21 ¬ Q P Q P ¬ Q K = L
21 ax-1 ¬ Q K = L Q P ¬ Q K = L
22 20 21 jaoi ¬ Q P ¬ Q K = L Q P ¬ Q K = L
23 19 22 sylbi ¬ Q q P | q K = L Q P ¬ Q K = L
24 23 impcom Q P ¬ Q q P | q K = L ¬ Q K = L
25 14 24 sylbi Q P q P | q K = L ¬ Q K = L
26 25 adantl K N L N Q P q P | q K = L ¬ Q K = L
27 26 iffalsed K N L N Q P q P | q K = L if Q K = L A B = B
28 13 27 eqtrd K N L N Q P q P | q K = L if K = K if Q K = L A B K M Q K = B
29 2 11 28 rspcedvd K N L N Q P q P | q K = L k N if k = K if Q k = L A B k M Q k = B
30 29 ex K N L N Q P q P | q K = L k N if k = K if Q k = L A B k M Q k = B