Step |
Hyp |
Ref |
Expression |
1 |
|
symgmatr01.p |
|- P = ( Base ` ( SymGrp ` N ) ) |
2 |
|
simpll |
|- ( ( ( K e. N /\ L e. N ) /\ Q e. ( P \ { q e. P | ( q ` K ) = L } ) ) -> K e. N ) |
3 |
|
eqeq1 |
|- ( k = K -> ( k = K <-> K = K ) ) |
4 |
|
fveq2 |
|- ( k = K -> ( Q ` k ) = ( Q ` K ) ) |
5 |
4
|
eqeq1d |
|- ( k = K -> ( ( Q ` k ) = L <-> ( Q ` K ) = L ) ) |
6 |
5
|
ifbid |
|- ( k = K -> if ( ( Q ` k ) = L , A , B ) = if ( ( Q ` K ) = L , A , B ) ) |
7 |
|
id |
|- ( k = K -> k = K ) |
8 |
7 4
|
oveq12d |
|- ( k = K -> ( k M ( Q ` k ) ) = ( K M ( Q ` K ) ) ) |
9 |
3 6 8
|
ifbieq12d |
|- ( k = K -> if ( k = K , if ( ( Q ` k ) = L , A , B ) , ( k M ( Q ` k ) ) ) = if ( K = K , if ( ( Q ` K ) = L , A , B ) , ( K M ( Q ` K ) ) ) ) |
10 |
9
|
eqeq1d |
|- ( k = K -> ( if ( k = K , if ( ( Q ` k ) = L , A , B ) , ( k M ( Q ` k ) ) ) = B <-> if ( K = K , if ( ( Q ` K ) = L , A , B ) , ( K M ( Q ` K ) ) ) = B ) ) |
11 |
10
|
adantl |
|- ( ( ( ( K e. N /\ L e. N ) /\ Q e. ( P \ { q e. P | ( q ` K ) = L } ) ) /\ k = K ) -> ( if ( k = K , if ( ( Q ` k ) = L , A , B ) , ( k M ( Q ` k ) ) ) = B <-> if ( K = K , if ( ( Q ` K ) = L , A , B ) , ( K M ( Q ` K ) ) ) = B ) ) |
12 |
|
eqidd |
|- ( ( ( K e. N /\ L e. N ) /\ Q e. ( P \ { q e. P | ( q ` K ) = L } ) ) -> K = K ) |
13 |
12
|
iftrued |
|- ( ( ( K e. N /\ L e. N ) /\ Q e. ( P \ { q e. P | ( q ` K ) = L } ) ) -> if ( K = K , if ( ( Q ` K ) = L , A , B ) , ( K M ( Q ` K ) ) ) = if ( ( Q ` K ) = L , A , B ) ) |
14 |
|
eldif |
|- ( Q e. ( P \ { q e. P | ( q ` K ) = L } ) <-> ( Q e. P /\ -. Q e. { q e. P | ( q ` K ) = L } ) ) |
15 |
|
ianor |
|- ( -. ( Q e. P /\ ( Q ` K ) = L ) <-> ( -. Q e. P \/ -. ( Q ` K ) = L ) ) |
16 |
|
fveq1 |
|- ( q = Q -> ( q ` K ) = ( Q ` K ) ) |
17 |
16
|
eqeq1d |
|- ( q = Q -> ( ( q ` K ) = L <-> ( Q ` K ) = L ) ) |
18 |
17
|
elrab |
|- ( Q e. { q e. P | ( q ` K ) = L } <-> ( Q e. P /\ ( Q ` K ) = L ) ) |
19 |
15 18
|
xchnxbir |
|- ( -. Q e. { q e. P | ( q ` K ) = L } <-> ( -. Q e. P \/ -. ( Q ` K ) = L ) ) |
20 |
|
pm2.21 |
|- ( -. Q e. P -> ( Q e. P -> -. ( Q ` K ) = L ) ) |
21 |
|
ax-1 |
|- ( -. ( Q ` K ) = L -> ( Q e. P -> -. ( Q ` K ) = L ) ) |
22 |
20 21
|
jaoi |
|- ( ( -. Q e. P \/ -. ( Q ` K ) = L ) -> ( Q e. P -> -. ( Q ` K ) = L ) ) |
23 |
19 22
|
sylbi |
|- ( -. Q e. { q e. P | ( q ` K ) = L } -> ( Q e. P -> -. ( Q ` K ) = L ) ) |
24 |
23
|
impcom |
|- ( ( Q e. P /\ -. Q e. { q e. P | ( q ` K ) = L } ) -> -. ( Q ` K ) = L ) |
25 |
14 24
|
sylbi |
|- ( Q e. ( P \ { q e. P | ( q ` K ) = L } ) -> -. ( Q ` K ) = L ) |
26 |
25
|
adantl |
|- ( ( ( K e. N /\ L e. N ) /\ Q e. ( P \ { q e. P | ( q ` K ) = L } ) ) -> -. ( Q ` K ) = L ) |
27 |
26
|
iffalsed |
|- ( ( ( K e. N /\ L e. N ) /\ Q e. ( P \ { q e. P | ( q ` K ) = L } ) ) -> if ( ( Q ` K ) = L , A , B ) = B ) |
28 |
13 27
|
eqtrd |
|- ( ( ( K e. N /\ L e. N ) /\ Q e. ( P \ { q e. P | ( q ` K ) = L } ) ) -> if ( K = K , if ( ( Q ` K ) = L , A , B ) , ( K M ( Q ` K ) ) ) = B ) |
29 |
2 11 28
|
rspcedvd |
|- ( ( ( K e. N /\ L e. N ) /\ Q e. ( P \ { q e. P | ( q ` K ) = L } ) ) -> E. k e. N if ( k = K , if ( ( Q ` k ) = L , A , B ) , ( k M ( Q ` k ) ) ) = B ) |
30 |
29
|
ex |
|- ( ( K e. N /\ L e. N ) -> ( Q e. ( P \ { q e. P | ( q ` K ) = L } ) -> E. k e. N if ( k = K , if ( ( Q ` k ) = L , A , B ) , ( k M ( Q ` k ) ) ) = B ) ) |