| Step | Hyp | Ref | Expression | 
						
							| 1 |  | symgmatr01.p |  |-  P = ( Base ` ( SymGrp ` N ) ) | 
						
							| 2 |  | simpll |  |-  ( ( ( K e. N /\ L e. N ) /\ Q e. ( P \ { q e. P | ( q ` K ) = L } ) ) -> K e. N ) | 
						
							| 3 |  | eqeq1 |  |-  ( k = K -> ( k = K <-> K = K ) ) | 
						
							| 4 |  | fveq2 |  |-  ( k = K -> ( Q ` k ) = ( Q ` K ) ) | 
						
							| 5 | 4 | eqeq1d |  |-  ( k = K -> ( ( Q ` k ) = L <-> ( Q ` K ) = L ) ) | 
						
							| 6 | 5 | ifbid |  |-  ( k = K -> if ( ( Q ` k ) = L , A , B ) = if ( ( Q ` K ) = L , A , B ) ) | 
						
							| 7 |  | id |  |-  ( k = K -> k = K ) | 
						
							| 8 | 7 4 | oveq12d |  |-  ( k = K -> ( k M ( Q ` k ) ) = ( K M ( Q ` K ) ) ) | 
						
							| 9 | 3 6 8 | ifbieq12d |  |-  ( k = K -> if ( k = K , if ( ( Q ` k ) = L , A , B ) , ( k M ( Q ` k ) ) ) = if ( K = K , if ( ( Q ` K ) = L , A , B ) , ( K M ( Q ` K ) ) ) ) | 
						
							| 10 | 9 | eqeq1d |  |-  ( k = K -> ( if ( k = K , if ( ( Q ` k ) = L , A , B ) , ( k M ( Q ` k ) ) ) = B <-> if ( K = K , if ( ( Q ` K ) = L , A , B ) , ( K M ( Q ` K ) ) ) = B ) ) | 
						
							| 11 | 10 | adantl |  |-  ( ( ( ( K e. N /\ L e. N ) /\ Q e. ( P \ { q e. P | ( q ` K ) = L } ) ) /\ k = K ) -> ( if ( k = K , if ( ( Q ` k ) = L , A , B ) , ( k M ( Q ` k ) ) ) = B <-> if ( K = K , if ( ( Q ` K ) = L , A , B ) , ( K M ( Q ` K ) ) ) = B ) ) | 
						
							| 12 |  | eqidd |  |-  ( ( ( K e. N /\ L e. N ) /\ Q e. ( P \ { q e. P | ( q ` K ) = L } ) ) -> K = K ) | 
						
							| 13 | 12 | iftrued |  |-  ( ( ( K e. N /\ L e. N ) /\ Q e. ( P \ { q e. P | ( q ` K ) = L } ) ) -> if ( K = K , if ( ( Q ` K ) = L , A , B ) , ( K M ( Q ` K ) ) ) = if ( ( Q ` K ) = L , A , B ) ) | 
						
							| 14 |  | eldif |  |-  ( Q e. ( P \ { q e. P | ( q ` K ) = L } ) <-> ( Q e. P /\ -. Q e. { q e. P | ( q ` K ) = L } ) ) | 
						
							| 15 |  | ianor |  |-  ( -. ( Q e. P /\ ( Q ` K ) = L ) <-> ( -. Q e. P \/ -. ( Q ` K ) = L ) ) | 
						
							| 16 |  | fveq1 |  |-  ( q = Q -> ( q ` K ) = ( Q ` K ) ) | 
						
							| 17 | 16 | eqeq1d |  |-  ( q = Q -> ( ( q ` K ) = L <-> ( Q ` K ) = L ) ) | 
						
							| 18 | 17 | elrab |  |-  ( Q e. { q e. P | ( q ` K ) = L } <-> ( Q e. P /\ ( Q ` K ) = L ) ) | 
						
							| 19 | 15 18 | xchnxbir |  |-  ( -. Q e. { q e. P | ( q ` K ) = L } <-> ( -. Q e. P \/ -. ( Q ` K ) = L ) ) | 
						
							| 20 |  | pm2.21 |  |-  ( -. Q e. P -> ( Q e. P -> -. ( Q ` K ) = L ) ) | 
						
							| 21 |  | ax-1 |  |-  ( -. ( Q ` K ) = L -> ( Q e. P -> -. ( Q ` K ) = L ) ) | 
						
							| 22 | 20 21 | jaoi |  |-  ( ( -. Q e. P \/ -. ( Q ` K ) = L ) -> ( Q e. P -> -. ( Q ` K ) = L ) ) | 
						
							| 23 | 19 22 | sylbi |  |-  ( -. Q e. { q e. P | ( q ` K ) = L } -> ( Q e. P -> -. ( Q ` K ) = L ) ) | 
						
							| 24 | 23 | impcom |  |-  ( ( Q e. P /\ -. Q e. { q e. P | ( q ` K ) = L } ) -> -. ( Q ` K ) = L ) | 
						
							| 25 | 14 24 | sylbi |  |-  ( Q e. ( P \ { q e. P | ( q ` K ) = L } ) -> -. ( Q ` K ) = L ) | 
						
							| 26 | 25 | adantl |  |-  ( ( ( K e. N /\ L e. N ) /\ Q e. ( P \ { q e. P | ( q ` K ) = L } ) ) -> -. ( Q ` K ) = L ) | 
						
							| 27 | 26 | iffalsed |  |-  ( ( ( K e. N /\ L e. N ) /\ Q e. ( P \ { q e. P | ( q ` K ) = L } ) ) -> if ( ( Q ` K ) = L , A , B ) = B ) | 
						
							| 28 | 13 27 | eqtrd |  |-  ( ( ( K e. N /\ L e. N ) /\ Q e. ( P \ { q e. P | ( q ` K ) = L } ) ) -> if ( K = K , if ( ( Q ` K ) = L , A , B ) , ( K M ( Q ` K ) ) ) = B ) | 
						
							| 29 | 2 11 28 | rspcedvd |  |-  ( ( ( K e. N /\ L e. N ) /\ Q e. ( P \ { q e. P | ( q ` K ) = L } ) ) -> E. k e. N if ( k = K , if ( ( Q ` k ) = L , A , B ) , ( k M ( Q ` k ) ) ) = B ) | 
						
							| 30 | 29 | ex |  |-  ( ( K e. N /\ L e. N ) -> ( Q e. ( P \ { q e. P | ( q ` K ) = L } ) -> E. k e. N if ( k = K , if ( ( Q ` k ) = L , A , B ) , ( k M ( Q ` k ) ) ) = B ) ) |