Step |
Hyp |
Ref |
Expression |
1 |
|
symgmatr01.p |
⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
2 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ) ∧ 𝑄 ∈ ( 𝑃 ∖ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐿 } ) ) → 𝐾 ∈ 𝑁 ) |
3 |
|
eqeq1 |
⊢ ( 𝑘 = 𝐾 → ( 𝑘 = 𝐾 ↔ 𝐾 = 𝐾 ) ) |
4 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ 𝐾 ) ) |
5 |
4
|
eqeq1d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑄 ‘ 𝑘 ) = 𝐿 ↔ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) ) |
6 |
5
|
ifbid |
⊢ ( 𝑘 = 𝐾 → if ( ( 𝑄 ‘ 𝑘 ) = 𝐿 , 𝐴 , 𝐵 ) = if ( ( 𝑄 ‘ 𝐾 ) = 𝐿 , 𝐴 , 𝐵 ) ) |
7 |
|
id |
⊢ ( 𝑘 = 𝐾 → 𝑘 = 𝐾 ) |
8 |
7 4
|
oveq12d |
⊢ ( 𝑘 = 𝐾 → ( 𝑘 𝑀 ( 𝑄 ‘ 𝑘 ) ) = ( 𝐾 𝑀 ( 𝑄 ‘ 𝐾 ) ) ) |
9 |
3 6 8
|
ifbieq12d |
⊢ ( 𝑘 = 𝐾 → if ( 𝑘 = 𝐾 , if ( ( 𝑄 ‘ 𝑘 ) = 𝐿 , 𝐴 , 𝐵 ) , ( 𝑘 𝑀 ( 𝑄 ‘ 𝑘 ) ) ) = if ( 𝐾 = 𝐾 , if ( ( 𝑄 ‘ 𝐾 ) = 𝐿 , 𝐴 , 𝐵 ) , ( 𝐾 𝑀 ( 𝑄 ‘ 𝐾 ) ) ) ) |
10 |
9
|
eqeq1d |
⊢ ( 𝑘 = 𝐾 → ( if ( 𝑘 = 𝐾 , if ( ( 𝑄 ‘ 𝑘 ) = 𝐿 , 𝐴 , 𝐵 ) , ( 𝑘 𝑀 ( 𝑄 ‘ 𝑘 ) ) ) = 𝐵 ↔ if ( 𝐾 = 𝐾 , if ( ( 𝑄 ‘ 𝐾 ) = 𝐿 , 𝐴 , 𝐵 ) , ( 𝐾 𝑀 ( 𝑄 ‘ 𝐾 ) ) ) = 𝐵 ) ) |
11 |
10
|
adantl |
⊢ ( ( ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ) ∧ 𝑄 ∈ ( 𝑃 ∖ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐿 } ) ) ∧ 𝑘 = 𝐾 ) → ( if ( 𝑘 = 𝐾 , if ( ( 𝑄 ‘ 𝑘 ) = 𝐿 , 𝐴 , 𝐵 ) , ( 𝑘 𝑀 ( 𝑄 ‘ 𝑘 ) ) ) = 𝐵 ↔ if ( 𝐾 = 𝐾 , if ( ( 𝑄 ‘ 𝐾 ) = 𝐿 , 𝐴 , 𝐵 ) , ( 𝐾 𝑀 ( 𝑄 ‘ 𝐾 ) ) ) = 𝐵 ) ) |
12 |
|
eqidd |
⊢ ( ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ) ∧ 𝑄 ∈ ( 𝑃 ∖ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐿 } ) ) → 𝐾 = 𝐾 ) |
13 |
12
|
iftrued |
⊢ ( ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ) ∧ 𝑄 ∈ ( 𝑃 ∖ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐿 } ) ) → if ( 𝐾 = 𝐾 , if ( ( 𝑄 ‘ 𝐾 ) = 𝐿 , 𝐴 , 𝐵 ) , ( 𝐾 𝑀 ( 𝑄 ‘ 𝐾 ) ) ) = if ( ( 𝑄 ‘ 𝐾 ) = 𝐿 , 𝐴 , 𝐵 ) ) |
14 |
|
eldif |
⊢ ( 𝑄 ∈ ( 𝑃 ∖ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐿 } ) ↔ ( 𝑄 ∈ 𝑃 ∧ ¬ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐿 } ) ) |
15 |
|
ianor |
⊢ ( ¬ ( 𝑄 ∈ 𝑃 ∧ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) ↔ ( ¬ 𝑄 ∈ 𝑃 ∨ ¬ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) ) |
16 |
|
fveq1 |
⊢ ( 𝑞 = 𝑄 → ( 𝑞 ‘ 𝐾 ) = ( 𝑄 ‘ 𝐾 ) ) |
17 |
16
|
eqeq1d |
⊢ ( 𝑞 = 𝑄 → ( ( 𝑞 ‘ 𝐾 ) = 𝐿 ↔ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) ) |
18 |
17
|
elrab |
⊢ ( 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐿 } ↔ ( 𝑄 ∈ 𝑃 ∧ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) ) |
19 |
15 18
|
xchnxbir |
⊢ ( ¬ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐿 } ↔ ( ¬ 𝑄 ∈ 𝑃 ∨ ¬ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) ) |
20 |
|
pm2.21 |
⊢ ( ¬ 𝑄 ∈ 𝑃 → ( 𝑄 ∈ 𝑃 → ¬ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) ) |
21 |
|
ax-1 |
⊢ ( ¬ ( 𝑄 ‘ 𝐾 ) = 𝐿 → ( 𝑄 ∈ 𝑃 → ¬ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) ) |
22 |
20 21
|
jaoi |
⊢ ( ( ¬ 𝑄 ∈ 𝑃 ∨ ¬ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) → ( 𝑄 ∈ 𝑃 → ¬ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) ) |
23 |
19 22
|
sylbi |
⊢ ( ¬ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐿 } → ( 𝑄 ∈ 𝑃 → ¬ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) ) |
24 |
23
|
impcom |
⊢ ( ( 𝑄 ∈ 𝑃 ∧ ¬ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐿 } ) → ¬ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) |
25 |
14 24
|
sylbi |
⊢ ( 𝑄 ∈ ( 𝑃 ∖ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐿 } ) → ¬ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) |
26 |
25
|
adantl |
⊢ ( ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ) ∧ 𝑄 ∈ ( 𝑃 ∖ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐿 } ) ) → ¬ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) |
27 |
26
|
iffalsed |
⊢ ( ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ) ∧ 𝑄 ∈ ( 𝑃 ∖ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐿 } ) ) → if ( ( 𝑄 ‘ 𝐾 ) = 𝐿 , 𝐴 , 𝐵 ) = 𝐵 ) |
28 |
13 27
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ) ∧ 𝑄 ∈ ( 𝑃 ∖ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐿 } ) ) → if ( 𝐾 = 𝐾 , if ( ( 𝑄 ‘ 𝐾 ) = 𝐿 , 𝐴 , 𝐵 ) , ( 𝐾 𝑀 ( 𝑄 ‘ 𝐾 ) ) ) = 𝐵 ) |
29 |
2 11 28
|
rspcedvd |
⊢ ( ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ) ∧ 𝑄 ∈ ( 𝑃 ∖ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐿 } ) ) → ∃ 𝑘 ∈ 𝑁 if ( 𝑘 = 𝐾 , if ( ( 𝑄 ‘ 𝑘 ) = 𝐿 , 𝐴 , 𝐵 ) , ( 𝑘 𝑀 ( 𝑄 ‘ 𝑘 ) ) ) = 𝐵 ) |
30 |
29
|
ex |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ) → ( 𝑄 ∈ ( 𝑃 ∖ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐿 } ) → ∃ 𝑘 ∈ 𝑁 if ( 𝑘 = 𝐾 , if ( ( 𝑄 ‘ 𝑘 ) = 𝐿 , 𝐴 , 𝐵 ) , ( 𝑘 𝑀 ( 𝑄 ‘ 𝑘 ) ) ) = 𝐵 ) ) |