Metamath Proof Explorer


Theorem matepm2cl

Description: Each entry of a matrix with an index as permutation of the other is an element of the underlying ring. (Contributed by AV, 1-Jan-2019)

Ref Expression
Hypotheses matepmcl.a A=NMatR
matepmcl.b B=BaseA
matepmcl.p P=BaseSymGrpN
Assertion matepm2cl RRingQPMBnNnMQnBaseR

Proof

Step Hyp Ref Expression
1 matepmcl.a A=NMatR
2 matepmcl.b B=BaseA
3 matepmcl.p P=BaseSymGrpN
4 simpr RRingQPMBnNnN
5 eqid SymGrpN=SymGrpN
6 5 3 symgfv QPnNQnN
7 6 3ad2antl2 RRingQPMBnNQnN
8 2 eleq2i MBMBaseA
9 8 biimpi MBMBaseA
10 9 3ad2ant3 RRingQPMBMBaseA
11 10 adantr RRingQPMBnNMBaseA
12 eqid BaseR=BaseR
13 1 12 matecl nNQnNMBaseAnMQnBaseR
14 4 7 11 13 syl3anc RRingQPMBnNnMQnBaseR
15 14 ralrimiva RRingQPMBnNnMQnBaseR