Metamath Proof Explorer


Theorem marep01ma

Description: Replacing a row of a square matrix by a row with 0's and a 1 results in a square matrix of the same dimension. (Contributed by AV, 30-Dec-2018)

Ref Expression
Hypotheses marep01ma.a A = N Mat R
marep01ma.b B = Base A
marep01ma.r R CRing
marep01ma.0 0 ˙ = 0 R
marep01ma.1 1 ˙ = 1 R
Assertion marep01ma M B k N , l N if k = H if l = I 1 ˙ 0 ˙ k M l B

Proof

Step Hyp Ref Expression
1 marep01ma.a A = N Mat R
2 marep01ma.b B = Base A
3 marep01ma.r R CRing
4 marep01ma.0 0 ˙ = 0 R
5 marep01ma.1 1 ˙ = 1 R
6 eqid Base R = Base R
7 1 2 matrcl M B N Fin R V
8 7 simpld M B N Fin
9 3 a1i M B R CRing
10 crngring R CRing R Ring
11 6 5 ringidcl R Ring 1 ˙ Base R
12 3 10 11 mp2b 1 ˙ Base R
13 6 4 ring0cl R Ring 0 ˙ Base R
14 3 10 13 mp2b 0 ˙ Base R
15 12 14 ifcli if l = I 1 ˙ 0 ˙ Base R
16 15 a1i M B k N l N if l = I 1 ˙ 0 ˙ Base R
17 simp2 M B k N l N k N
18 simp3 M B k N l N l N
19 id M B M B
20 19 2 eleqtrdi M B M Base A
21 20 3ad2ant1 M B k N l N M Base A
22 1 6 matecl k N l N M Base A k M l Base R
23 17 18 21 22 syl3anc M B k N l N k M l Base R
24 16 23 ifcld M B k N l N if k = H if l = I 1 ˙ 0 ˙ k M l Base R
25 1 6 2 8 9 24 matbas2d M B k N , l N if k = H if l = I 1 ˙ 0 ˙ k M l B