Metamath Proof Explorer


Theorem smadiadetlem2

Description: Lemma 2 for smadiadet : The summands of the Leibniz' formula vanish for all permutations fixing the index of the row containing the 0's and the 1 to itself. (Contributed by AV, 31-Dec-2018)

Ref Expression
Hypotheses marep01ma.a A = N Mat R
marep01ma.b B = Base A
marep01ma.r R CRing
marep01ma.0 0 ˙ = 0 R
marep01ma.1 1 ˙ = 1 R
smadiadetlem.p P = Base SymGrp N
smadiadetlem.g G = mulGrp R
madetminlem.y Y = ℤRHom R
madetminlem.s S = pmSgn N
madetminlem.t · ˙ = R
Assertion smadiadetlem2 M B K N R p P q P | q K = K Y S p · ˙ G n N n i N , j N if i = K if j = K 1 ˙ 0 ˙ i M j p n = 0 ˙

Proof

Step Hyp Ref Expression
1 marep01ma.a A = N Mat R
2 marep01ma.b B = Base A
3 marep01ma.r R CRing
4 marep01ma.0 0 ˙ = 0 R
5 marep01ma.1 1 ˙ = 1 R
6 smadiadetlem.p P = Base SymGrp N
7 smadiadetlem.g G = mulGrp R
8 madetminlem.y Y = ℤRHom R
9 madetminlem.s S = pmSgn N
10 madetminlem.t · ˙ = R
11 1 2 3 4 5 6 7 8 9 10 smadiadetlem1a M B K N K N R p P q P | q K = K Y S p · ˙ G n N n i N , j N if i = K if j = K 1 ˙ 0 ˙ i M j p n = 0 ˙
12 11 3anidm23 M B K N R p P q P | q K = K Y S p · ˙ G n N n i N , j N if i = K if j = K 1 ˙ 0 ˙ i M j p n = 0 ˙