| Step |
Hyp |
Ref |
Expression |
| 1 |
|
marep01ma.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 2 |
|
marep01ma.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 3 |
|
marep01ma.r |
⊢ 𝑅 ∈ CRing |
| 4 |
|
marep01ma.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 5 |
|
marep01ma.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 6 |
|
smadiadetlem.p |
⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
| 7 |
|
smadiadetlem.g |
⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) |
| 8 |
|
madetminlem.y |
⊢ 𝑌 = ( ℤRHom ‘ 𝑅 ) |
| 9 |
|
madetminlem.s |
⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) |
| 10 |
|
madetminlem.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 11 |
1 2 3 4 5 6 7 8 9 10
|
smadiadetlem1a |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐾 ∈ 𝑁 ) → ( 𝑅 Σg ( 𝑝 ∈ ( 𝑃 ∖ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝐺 Σg ( 𝑛 ∈ 𝑁 ↦ ( 𝑛 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , if ( 𝑗 = 𝐾 , 1 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ) ( 𝑝 ‘ 𝑛 ) ) ) ) ) ) ) = 0 ) |
| 12 |
11
|
3anidm23 |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ) → ( 𝑅 Σg ( 𝑝 ∈ ( 𝑃 ∖ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝐺 Σg ( 𝑛 ∈ 𝑁 ↦ ( 𝑛 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , if ( 𝑗 = 𝐾 , 1 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ) ( 𝑝 ‘ 𝑛 ) ) ) ) ) ) ) = 0 ) |