| Step |
Hyp |
Ref |
Expression |
| 1 |
|
marep01ma.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 2 |
|
marep01ma.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 3 |
|
marep01ma.r |
⊢ 𝑅 ∈ CRing |
| 4 |
|
marep01ma.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 5 |
|
marep01ma.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 6 |
|
smadiadetlem.p |
⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
| 7 |
|
smadiadetlem.g |
⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) |
| 8 |
|
madetminlem.y |
⊢ 𝑌 = ( ℤRHom ‘ 𝑅 ) |
| 9 |
|
madetminlem.s |
⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) |
| 10 |
|
madetminlem.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 11 |
|
smadiadetlem.w |
⊢ 𝑊 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) |
| 12 |
|
smadiadetlem.z |
⊢ 𝑍 = ( pmSgn ‘ ( 𝑁 ∖ { 𝐾 } ) ) |
| 13 |
|
difssd |
⊢ ( 𝐾 ∈ 𝑁 → ( 𝑁 ∖ { 𝐾 } ) ⊆ 𝑁 ) |
| 14 |
13
|
anim2i |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ) → ( 𝑀 ∈ 𝐵 ∧ ( 𝑁 ∖ { 𝐾 } ) ⊆ 𝑁 ) ) |
| 15 |
14
|
adantr |
⊢ ( ( ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ 𝑊 ) → ( 𝑀 ∈ 𝐵 ∧ ( 𝑁 ∖ { 𝐾 } ) ⊆ 𝑁 ) ) |
| 16 |
1 2
|
submabas |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ ( 𝑁 ∖ { 𝐾 } ) ⊆ 𝑁 ) → ( 𝑖 ∈ ( 𝑁 ∖ { 𝐾 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝐾 } ) ↦ ( 𝑖 𝑀 𝑗 ) ) ∈ ( Base ‘ ( ( 𝑁 ∖ { 𝐾 } ) Mat 𝑅 ) ) ) |
| 17 |
15 16
|
syl |
⊢ ( ( ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ 𝑊 ) → ( 𝑖 ∈ ( 𝑁 ∖ { 𝐾 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝐾 } ) ↦ ( 𝑖 𝑀 𝑗 ) ) ∈ ( Base ‘ ( ( 𝑁 ∖ { 𝐾 } ) Mat 𝑅 ) ) ) |
| 18 |
|
simpr |
⊢ ( ( ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ 𝑊 ) → 𝑄 ∈ 𝑊 ) |
| 19 |
|
eqid |
⊢ ( ( 𝑁 ∖ { 𝐾 } ) Mat 𝑅 ) = ( ( 𝑁 ∖ { 𝐾 } ) Mat 𝑅 ) |
| 20 |
|
eqid |
⊢ ( Base ‘ ( ( 𝑁 ∖ { 𝐾 } ) Mat 𝑅 ) ) = ( Base ‘ ( ( 𝑁 ∖ { 𝐾 } ) Mat 𝑅 ) ) |
| 21 |
11 12 8 19 20 7
|
madetsmelbas2 |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑖 ∈ ( 𝑁 ∖ { 𝐾 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝐾 } ) ↦ ( 𝑖 𝑀 𝑗 ) ) ∈ ( Base ‘ ( ( 𝑁 ∖ { 𝐾 } ) Mat 𝑅 ) ) ∧ 𝑄 ∈ 𝑊 ) → ( ( ( 𝑌 ∘ 𝑍 ) ‘ 𝑄 ) ( .r ‘ 𝑅 ) ( 𝐺 Σg ( 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ↦ ( 𝑛 ( 𝑖 ∈ ( 𝑁 ∖ { 𝐾 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝐾 } ) ↦ ( 𝑖 𝑀 𝑗 ) ) ( 𝑄 ‘ 𝑛 ) ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 22 |
3 17 18 21
|
mp3an2i |
⊢ ( ( ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ 𝑊 ) → ( ( ( 𝑌 ∘ 𝑍 ) ‘ 𝑄 ) ( .r ‘ 𝑅 ) ( 𝐺 Σg ( 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ↦ ( 𝑛 ( 𝑖 ∈ ( 𝑁 ∖ { 𝐾 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝐾 } ) ↦ ( 𝑖 𝑀 𝑗 ) ) ( 𝑄 ‘ 𝑛 ) ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |