Metamath Proof Explorer


Theorem submabas

Description: Any subset of the index set of a square matrix defines a submatrix of the matrix. (Contributed by AV, 1-Jan-2019)

Ref Expression
Hypotheses submabas.a 𝐴 = ( 𝑁 Mat 𝑅 )
submabas.b 𝐵 = ( Base ‘ 𝐴 )
Assertion submabas ( ( 𝑀𝐵𝐷𝑁 ) → ( 𝑖𝐷 , 𝑗𝐷 ↦ ( 𝑖 𝑀 𝑗 ) ) ∈ ( Base ‘ ( 𝐷 Mat 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 submabas.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 submabas.b 𝐵 = ( Base ‘ 𝐴 )
3 eqid ( 𝐷 Mat 𝑅 ) = ( 𝐷 Mat 𝑅 )
4 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
5 eqid ( Base ‘ ( 𝐷 Mat 𝑅 ) ) = ( Base ‘ ( 𝐷 Mat 𝑅 ) )
6 1 2 matrcl ( 𝑀𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) )
7 6 simpld ( 𝑀𝐵𝑁 ∈ Fin )
8 ssfi ( ( 𝑁 ∈ Fin ∧ 𝐷𝑁 ) → 𝐷 ∈ Fin )
9 7 8 sylan ( ( 𝑀𝐵𝐷𝑁 ) → 𝐷 ∈ Fin )
10 6 simprd ( 𝑀𝐵𝑅 ∈ V )
11 10 adantr ( ( 𝑀𝐵𝐷𝑁 ) → 𝑅 ∈ V )
12 ssel ( 𝐷𝑁 → ( 𝑖𝐷𝑖𝑁 ) )
13 12 adantl ( ( 𝑀𝐵𝐷𝑁 ) → ( 𝑖𝐷𝑖𝑁 ) )
14 13 imp ( ( ( 𝑀𝐵𝐷𝑁 ) ∧ 𝑖𝐷 ) → 𝑖𝑁 )
15 14 3adant3 ( ( ( 𝑀𝐵𝐷𝑁 ) ∧ 𝑖𝐷𝑗𝐷 ) → 𝑖𝑁 )
16 ssel ( 𝐷𝑁 → ( 𝑗𝐷𝑗𝑁 ) )
17 16 adantl ( ( 𝑀𝐵𝐷𝑁 ) → ( 𝑗𝐷𝑗𝑁 ) )
18 17 imp ( ( ( 𝑀𝐵𝐷𝑁 ) ∧ 𝑗𝐷 ) → 𝑗𝑁 )
19 18 3adant2 ( ( ( 𝑀𝐵𝐷𝑁 ) ∧ 𝑖𝐷𝑗𝐷 ) → 𝑗𝑁 )
20 2 eleq2i ( 𝑀𝐵𝑀 ∈ ( Base ‘ 𝐴 ) )
21 20 biimpi ( 𝑀𝐵𝑀 ∈ ( Base ‘ 𝐴 ) )
22 21 adantr ( ( 𝑀𝐵𝐷𝑁 ) → 𝑀 ∈ ( Base ‘ 𝐴 ) )
23 22 3ad2ant1 ( ( ( 𝑀𝐵𝐷𝑁 ) ∧ 𝑖𝐷𝑗𝐷 ) → 𝑀 ∈ ( Base ‘ 𝐴 ) )
24 1 4 matecl ( ( 𝑖𝑁𝑗𝑁𝑀 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑖 𝑀 𝑗 ) ∈ ( Base ‘ 𝑅 ) )
25 15 19 23 24 syl3anc ( ( ( 𝑀𝐵𝐷𝑁 ) ∧ 𝑖𝐷𝑗𝐷 ) → ( 𝑖 𝑀 𝑗 ) ∈ ( Base ‘ 𝑅 ) )
26 3 4 5 9 11 25 matbas2d ( ( 𝑀𝐵𝐷𝑁 ) → ( 𝑖𝐷 , 𝑗𝐷 ↦ ( 𝑖 𝑀 𝑗 ) ) ∈ ( Base ‘ ( 𝐷 Mat 𝑅 ) ) )