Metamath Proof Explorer


Theorem submabas

Description: Any subset of the index set of a square matrix defines a submatrix of the matrix. (Contributed by AV, 1-Jan-2019)

Ref Expression
Hypotheses submabas.a A=NMatR
submabas.b B=BaseA
Assertion submabas MBDNiD,jDiMjBaseDMatR

Proof

Step Hyp Ref Expression
1 submabas.a A=NMatR
2 submabas.b B=BaseA
3 eqid DMatR=DMatR
4 eqid BaseR=BaseR
5 eqid BaseDMatR=BaseDMatR
6 1 2 matrcl MBNFinRV
7 6 simpld MBNFin
8 ssfi NFinDNDFin
9 7 8 sylan MBDNDFin
10 6 simprd MBRV
11 10 adantr MBDNRV
12 ssel DNiDiN
13 12 adantl MBDNiDiN
14 13 imp MBDNiDiN
15 14 3adant3 MBDNiDjDiN
16 ssel DNjDjN
17 16 adantl MBDNjDjN
18 17 imp MBDNjDjN
19 18 3adant2 MBDNiDjDjN
20 2 eleq2i MBMBaseA
21 20 biimpi MBMBaseA
22 21 adantr MBDNMBaseA
23 22 3ad2ant1 MBDNiDjDMBaseA
24 1 4 matecl iNjNMBaseAiMjBaseR
25 15 19 23 24 syl3anc MBDNiDjDiMjBaseR
26 3 4 5 9 11 25 matbas2d MBDNiD,jDiMjBaseDMatR