Metamath Proof Explorer


Theorem submabas

Description: Any subset of the index set of a square matrix defines a submatrix of the matrix. (Contributed by AV, 1-Jan-2019)

Ref Expression
Hypotheses submabas.a A = N Mat R
submabas.b B = Base A
Assertion submabas M B D N i D , j D i M j Base D Mat R

Proof

Step Hyp Ref Expression
1 submabas.a A = N Mat R
2 submabas.b B = Base A
3 eqid D Mat R = D Mat R
4 eqid Base R = Base R
5 eqid Base D Mat R = Base D Mat R
6 1 2 matrcl M B N Fin R V
7 6 simpld M B N Fin
8 ssfi N Fin D N D Fin
9 7 8 sylan M B D N D Fin
10 6 simprd M B R V
11 10 adantr M B D N R V
12 ssel D N i D i N
13 12 adantl M B D N i D i N
14 13 imp M B D N i D i N
15 14 3adant3 M B D N i D j D i N
16 ssel D N j D j N
17 16 adantl M B D N j D j N
18 17 imp M B D N j D j N
19 18 3adant2 M B D N i D j D j N
20 2 eleq2i M B M Base A
21 20 biimpi M B M Base A
22 21 adantr M B D N M Base A
23 22 3ad2ant1 M B D N i D j D M Base A
24 1 4 matecl i N j N M Base A i M j Base R
25 15 19 23 24 syl3anc M B D N i D j D i M j Base R
26 3 4 5 9 11 25 matbas2d M B D N i D , j D i M j Base D Mat R