Step |
Hyp |
Ref |
Expression |
1 |
|
submafval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
submafval.q |
⊢ 𝑄 = ( 𝑁 subMat 𝑅 ) |
3 |
|
submafval.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
4 |
|
oveq12 |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 Mat 𝑟 ) = ( 𝑁 Mat 𝑅 ) ) |
5 |
4 1
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 Mat 𝑟 ) = 𝐴 ) |
6 |
5
|
fveq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑛 Mat 𝑟 ) ) = ( Base ‘ 𝐴 ) ) |
7 |
6 3
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑛 Mat 𝑟 ) ) = 𝐵 ) |
8 |
|
simpl |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → 𝑛 = 𝑁 ) |
9 |
|
difeq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 ∖ { 𝑘 } ) = ( 𝑁 ∖ { 𝑘 } ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 ∖ { 𝑘 } ) = ( 𝑁 ∖ { 𝑘 } ) ) |
11 |
|
difeq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 ∖ { 𝑙 } ) = ( 𝑁 ∖ { 𝑙 } ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 ∖ { 𝑙 } ) = ( 𝑁 ∖ { 𝑙 } ) ) |
13 |
|
eqidd |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑖 𝑚 𝑗 ) = ( 𝑖 𝑚 𝑗 ) ) |
14 |
10 12 13
|
mpoeq123dv |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑖 ∈ ( 𝑛 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑛 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑚 𝑗 ) ) = ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑚 𝑗 ) ) ) |
15 |
8 8 14
|
mpoeq123dv |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑘 ∈ 𝑛 , 𝑙 ∈ 𝑛 ↦ ( 𝑖 ∈ ( 𝑛 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑛 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑚 𝑗 ) ) ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑚 𝑗 ) ) ) ) |
16 |
7 15
|
mpteq12dv |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑘 ∈ 𝑛 , 𝑙 ∈ 𝑛 ↦ ( 𝑖 ∈ ( 𝑛 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑛 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑚 𝑗 ) ) ) ) = ( 𝑚 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑚 𝑗 ) ) ) ) ) |
17 |
|
df-subma |
⊢ subMat = ( 𝑛 ∈ V , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑘 ∈ 𝑛 , 𝑙 ∈ 𝑛 ↦ ( 𝑖 ∈ ( 𝑛 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑛 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑚 𝑗 ) ) ) ) ) |
18 |
3
|
fvexi |
⊢ 𝐵 ∈ V |
19 |
18
|
mptex |
⊢ ( 𝑚 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑚 𝑗 ) ) ) ) ∈ V |
20 |
16 17 19
|
ovmpoa |
⊢ ( ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑁 subMat 𝑅 ) = ( 𝑚 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑚 𝑗 ) ) ) ) ) |
21 |
17
|
mpondm0 |
⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑁 subMat 𝑅 ) = ∅ ) |
22 |
|
mpt0 |
⊢ ( 𝑚 ∈ ∅ ↦ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑚 𝑗 ) ) ) ) = ∅ |
23 |
21 22
|
eqtr4di |
⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑁 subMat 𝑅 ) = ( 𝑚 ∈ ∅ ↦ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑚 𝑗 ) ) ) ) ) |
24 |
1
|
fveq2i |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) |
25 |
3 24
|
eqtri |
⊢ 𝐵 = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) |
26 |
|
matbas0pc |
⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( Base ‘ ( 𝑁 Mat 𝑅 ) ) = ∅ ) |
27 |
25 26
|
syl5eq |
⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → 𝐵 = ∅ ) |
28 |
27
|
mpteq1d |
⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑚 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑚 𝑗 ) ) ) ) = ( 𝑚 ∈ ∅ ↦ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑚 𝑗 ) ) ) ) ) |
29 |
23 28
|
eqtr4d |
⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑁 subMat 𝑅 ) = ( 𝑚 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑚 𝑗 ) ) ) ) ) |
30 |
20 29
|
pm2.61i |
⊢ ( 𝑁 subMat 𝑅 ) = ( 𝑚 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑚 𝑗 ) ) ) ) |
31 |
2 30
|
eqtri |
⊢ 𝑄 = ( 𝑚 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑚 𝑗 ) ) ) ) |