| Step |
Hyp |
Ref |
Expression |
| 0 |
|
csubma |
⊢ subMat |
| 1 |
|
vn |
⊢ 𝑛 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vr |
⊢ 𝑟 |
| 4 |
|
vm |
⊢ 𝑚 |
| 5 |
|
cbs |
⊢ Base |
| 6 |
1
|
cv |
⊢ 𝑛 |
| 7 |
|
cmat |
⊢ Mat |
| 8 |
3
|
cv |
⊢ 𝑟 |
| 9 |
6 8 7
|
co |
⊢ ( 𝑛 Mat 𝑟 ) |
| 10 |
9 5
|
cfv |
⊢ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) |
| 11 |
|
vk |
⊢ 𝑘 |
| 12 |
|
vl |
⊢ 𝑙 |
| 13 |
|
vi |
⊢ 𝑖 |
| 14 |
11
|
cv |
⊢ 𝑘 |
| 15 |
14
|
csn |
⊢ { 𝑘 } |
| 16 |
6 15
|
cdif |
⊢ ( 𝑛 ∖ { 𝑘 } ) |
| 17 |
|
vj |
⊢ 𝑗 |
| 18 |
12
|
cv |
⊢ 𝑙 |
| 19 |
18
|
csn |
⊢ { 𝑙 } |
| 20 |
6 19
|
cdif |
⊢ ( 𝑛 ∖ { 𝑙 } ) |
| 21 |
13
|
cv |
⊢ 𝑖 |
| 22 |
4
|
cv |
⊢ 𝑚 |
| 23 |
17
|
cv |
⊢ 𝑗 |
| 24 |
21 23 22
|
co |
⊢ ( 𝑖 𝑚 𝑗 ) |
| 25 |
13 17 16 20 24
|
cmpo |
⊢ ( 𝑖 ∈ ( 𝑛 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑛 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑚 𝑗 ) ) |
| 26 |
11 12 6 6 25
|
cmpo |
⊢ ( 𝑘 ∈ 𝑛 , 𝑙 ∈ 𝑛 ↦ ( 𝑖 ∈ ( 𝑛 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑛 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑚 𝑗 ) ) ) |
| 27 |
4 10 26
|
cmpt |
⊢ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑘 ∈ 𝑛 , 𝑙 ∈ 𝑛 ↦ ( 𝑖 ∈ ( 𝑛 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑛 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑚 𝑗 ) ) ) ) |
| 28 |
1 3 2 2 27
|
cmpo |
⊢ ( 𝑛 ∈ V , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑘 ∈ 𝑛 , 𝑙 ∈ 𝑛 ↦ ( 𝑖 ∈ ( 𝑛 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑛 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑚 𝑗 ) ) ) ) ) |
| 29 |
0 28
|
wceq |
⊢ subMat = ( 𝑛 ∈ V , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑘 ∈ 𝑛 , 𝑙 ∈ 𝑛 ↦ ( 𝑖 ∈ ( 𝑛 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑛 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑚 𝑗 ) ) ) ) ) |