Step |
Hyp |
Ref |
Expression |
1 |
|
marep01ma.a |
|- A = ( N Mat R ) |
2 |
|
marep01ma.b |
|- B = ( Base ` A ) |
3 |
|
marep01ma.r |
|- R e. CRing |
4 |
|
marep01ma.0 |
|- .0. = ( 0g ` R ) |
5 |
|
marep01ma.1 |
|- .1. = ( 1r ` R ) |
6 |
|
smadiadetlem.p |
|- P = ( Base ` ( SymGrp ` N ) ) |
7 |
|
smadiadetlem.g |
|- G = ( mulGrp ` R ) |
8 |
|
madetminlem.y |
|- Y = ( ZRHom ` R ) |
9 |
|
madetminlem.s |
|- S = ( pmSgn ` N ) |
10 |
|
madetminlem.t |
|- .x. = ( .r ` R ) |
11 |
|
smadiadetlem.w |
|- W = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
12 |
|
smadiadetlem.z |
|- Z = ( pmSgn ` ( N \ { K } ) ) |
13 |
|
difssd |
|- ( K e. N -> ( N \ { K } ) C_ N ) |
14 |
13
|
anim2i |
|- ( ( M e. B /\ K e. N ) -> ( M e. B /\ ( N \ { K } ) C_ N ) ) |
15 |
14
|
adantr |
|- ( ( ( M e. B /\ K e. N ) /\ Q e. W ) -> ( M e. B /\ ( N \ { K } ) C_ N ) ) |
16 |
1 2
|
submabas |
|- ( ( M e. B /\ ( N \ { K } ) C_ N ) -> ( i e. ( N \ { K } ) , j e. ( N \ { K } ) |-> ( i M j ) ) e. ( Base ` ( ( N \ { K } ) Mat R ) ) ) |
17 |
15 16
|
syl |
|- ( ( ( M e. B /\ K e. N ) /\ Q e. W ) -> ( i e. ( N \ { K } ) , j e. ( N \ { K } ) |-> ( i M j ) ) e. ( Base ` ( ( N \ { K } ) Mat R ) ) ) |
18 |
|
simpr |
|- ( ( ( M e. B /\ K e. N ) /\ Q e. W ) -> Q e. W ) |
19 |
|
eqid |
|- ( ( N \ { K } ) Mat R ) = ( ( N \ { K } ) Mat R ) |
20 |
|
eqid |
|- ( Base ` ( ( N \ { K } ) Mat R ) ) = ( Base ` ( ( N \ { K } ) Mat R ) ) |
21 |
11 12 8 19 20 7
|
madetsmelbas2 |
|- ( ( R e. CRing /\ ( i e. ( N \ { K } ) , j e. ( N \ { K } ) |-> ( i M j ) ) e. ( Base ` ( ( N \ { K } ) Mat R ) ) /\ Q e. W ) -> ( ( ( Y o. Z ) ` Q ) ( .r ` R ) ( G gsum ( n e. ( N \ { K } ) |-> ( n ( i e. ( N \ { K } ) , j e. ( N \ { K } ) |-> ( i M j ) ) ( Q ` n ) ) ) ) ) e. ( Base ` R ) ) |
22 |
3 17 18 21
|
mp3an2i |
|- ( ( ( M e. B /\ K e. N ) /\ Q e. W ) -> ( ( ( Y o. Z ) ` Q ) ( .r ` R ) ( G gsum ( n e. ( N \ { K } ) |-> ( n ( i e. ( N \ { K } ) , j e. ( N \ { K } ) |-> ( i M j ) ) ( Q ` n ) ) ) ) ) e. ( Base ` R ) ) |