Description: Lemma 1 for smadiadetlem3 . (Contributed by AV, 12-Jan-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | marep01ma.a | |- A = ( N Mat R ) |
|
marep01ma.b | |- B = ( Base ` A ) |
||
marep01ma.r | |- R e. CRing |
||
marep01ma.0 | |- .0. = ( 0g ` R ) |
||
marep01ma.1 | |- .1. = ( 1r ` R ) |
||
smadiadetlem.p | |- P = ( Base ` ( SymGrp ` N ) ) |
||
smadiadetlem.g | |- G = ( mulGrp ` R ) |
||
madetminlem.y | |- Y = ( ZRHom ` R ) |
||
madetminlem.s | |- S = ( pmSgn ` N ) |
||
madetminlem.t | |- .x. = ( .r ` R ) |
||
smadiadetlem.w | |- W = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
||
smadiadetlem.z | |- Z = ( pmSgn ` ( N \ { K } ) ) |
||
Assertion | smadiadetlem3lem1 | |- ( ( M e. B /\ K e. N ) -> ( p e. W |-> ( ( ( Y o. Z ) ` p ) ( .r ` R ) ( G gsum ( n e. ( N \ { K } ) |-> ( n ( i e. ( N \ { K } ) , j e. ( N \ { K } ) |-> ( i M j ) ) ( p ` n ) ) ) ) ) ) : W --> ( Base ` R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | marep01ma.a | |- A = ( N Mat R ) |
|
2 | marep01ma.b | |- B = ( Base ` A ) |
|
3 | marep01ma.r | |- R e. CRing |
|
4 | marep01ma.0 | |- .0. = ( 0g ` R ) |
|
5 | marep01ma.1 | |- .1. = ( 1r ` R ) |
|
6 | smadiadetlem.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
7 | smadiadetlem.g | |- G = ( mulGrp ` R ) |
|
8 | madetminlem.y | |- Y = ( ZRHom ` R ) |
|
9 | madetminlem.s | |- S = ( pmSgn ` N ) |
|
10 | madetminlem.t | |- .x. = ( .r ` R ) |
|
11 | smadiadetlem.w | |- W = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
|
12 | smadiadetlem.z | |- Z = ( pmSgn ` ( N \ { K } ) ) |
|
13 | 1 2 3 4 5 6 7 8 9 10 11 12 | smadiadetlem3lem0 | |- ( ( ( M e. B /\ K e. N ) /\ p e. W ) -> ( ( ( Y o. Z ) ` p ) ( .r ` R ) ( G gsum ( n e. ( N \ { K } ) |-> ( n ( i e. ( N \ { K } ) , j e. ( N \ { K } ) |-> ( i M j ) ) ( p ` n ) ) ) ) ) e. ( Base ` R ) ) |
14 | 13 | fmpttd | |- ( ( M e. B /\ K e. N ) -> ( p e. W |-> ( ( ( Y o. Z ) ` p ) ( .r ` R ) ( G gsum ( n e. ( N \ { K } ) |-> ( n ( i e. ( N \ { K } ) , j e. ( N \ { K } ) |-> ( i M j ) ) ( p ` n ) ) ) ) ) ) : W --> ( Base ` R ) ) |