Metamath Proof Explorer


Theorem smadiadetlem3lem1

Description: Lemma 1 for smadiadetlem3 . (Contributed by AV, 12-Jan-2019)

Ref Expression
Hypotheses marep01ma.a
|- A = ( N Mat R )
marep01ma.b
|- B = ( Base ` A )
marep01ma.r
|- R e. CRing
marep01ma.0
|- .0. = ( 0g ` R )
marep01ma.1
|- .1. = ( 1r ` R )
smadiadetlem.p
|- P = ( Base ` ( SymGrp ` N ) )
smadiadetlem.g
|- G = ( mulGrp ` R )
madetminlem.y
|- Y = ( ZRHom ` R )
madetminlem.s
|- S = ( pmSgn ` N )
madetminlem.t
|- .x. = ( .r ` R )
smadiadetlem.w
|- W = ( Base ` ( SymGrp ` ( N \ { K } ) ) )
smadiadetlem.z
|- Z = ( pmSgn ` ( N \ { K } ) )
Assertion smadiadetlem3lem1
|- ( ( M e. B /\ K e. N ) -> ( p e. W |-> ( ( ( Y o. Z ) ` p ) ( .r ` R ) ( G gsum ( n e. ( N \ { K } ) |-> ( n ( i e. ( N \ { K } ) , j e. ( N \ { K } ) |-> ( i M j ) ) ( p ` n ) ) ) ) ) ) : W --> ( Base ` R ) )

Proof

Step Hyp Ref Expression
1 marep01ma.a
 |-  A = ( N Mat R )
2 marep01ma.b
 |-  B = ( Base ` A )
3 marep01ma.r
 |-  R e. CRing
4 marep01ma.0
 |-  .0. = ( 0g ` R )
5 marep01ma.1
 |-  .1. = ( 1r ` R )
6 smadiadetlem.p
 |-  P = ( Base ` ( SymGrp ` N ) )
7 smadiadetlem.g
 |-  G = ( mulGrp ` R )
8 madetminlem.y
 |-  Y = ( ZRHom ` R )
9 madetminlem.s
 |-  S = ( pmSgn ` N )
10 madetminlem.t
 |-  .x. = ( .r ` R )
11 smadiadetlem.w
 |-  W = ( Base ` ( SymGrp ` ( N \ { K } ) ) )
12 smadiadetlem.z
 |-  Z = ( pmSgn ` ( N \ { K } ) )
13 1 2 3 4 5 6 7 8 9 10 11 12 smadiadetlem3lem0
 |-  ( ( ( M e. B /\ K e. N ) /\ p e. W ) -> ( ( ( Y o. Z ) ` p ) ( .r ` R ) ( G gsum ( n e. ( N \ { K } ) |-> ( n ( i e. ( N \ { K } ) , j e. ( N \ { K } ) |-> ( i M j ) ) ( p ` n ) ) ) ) ) e. ( Base ` R ) )
14 13 fmpttd
 |-  ( ( M e. B /\ K e. N ) -> ( p e. W |-> ( ( ( Y o. Z ) ` p ) ( .r ` R ) ( G gsum ( n e. ( N \ { K } ) |-> ( n ( i e. ( N \ { K } ) , j e. ( N \ { K } ) |-> ( i M j ) ) ( p ` n ) ) ) ) ) ) : W --> ( Base ` R ) )