Description: Lemma 2 for smadiadet : The summands of the Leibniz' formula vanish for all permutations fixing the index of the row containing the 0's and the 1 to itself. (Contributed by AV, 31-Dec-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | marep01ma.a | |- A = ( N Mat R ) |
|
marep01ma.b | |- B = ( Base ` A ) |
||
marep01ma.r | |- R e. CRing |
||
marep01ma.0 | |- .0. = ( 0g ` R ) |
||
marep01ma.1 | |- .1. = ( 1r ` R ) |
||
smadiadetlem.p | |- P = ( Base ` ( SymGrp ` N ) ) |
||
smadiadetlem.g | |- G = ( mulGrp ` R ) |
||
madetminlem.y | |- Y = ( ZRHom ` R ) |
||
madetminlem.s | |- S = ( pmSgn ` N ) |
||
madetminlem.t | |- .x. = ( .r ` R ) |
||
Assertion | smadiadetlem2 | |- ( ( M e. B /\ K e. N ) -> ( R gsum ( p e. ( P \ { q e. P | ( q ` K ) = K } ) |-> ( ( ( Y o. S ) ` p ) .x. ( G gsum ( n e. N |-> ( n ( i e. N , j e. N |-> if ( i = K , if ( j = K , .1. , .0. ) , ( i M j ) ) ) ( p ` n ) ) ) ) ) ) ) = .0. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | marep01ma.a | |- A = ( N Mat R ) |
|
2 | marep01ma.b | |- B = ( Base ` A ) |
|
3 | marep01ma.r | |- R e. CRing |
|
4 | marep01ma.0 | |- .0. = ( 0g ` R ) |
|
5 | marep01ma.1 | |- .1. = ( 1r ` R ) |
|
6 | smadiadetlem.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
7 | smadiadetlem.g | |- G = ( mulGrp ` R ) |
|
8 | madetminlem.y | |- Y = ( ZRHom ` R ) |
|
9 | madetminlem.s | |- S = ( pmSgn ` N ) |
|
10 | madetminlem.t | |- .x. = ( .r ` R ) |
|
11 | 1 2 3 4 5 6 7 8 9 10 | smadiadetlem1a | |- ( ( M e. B /\ K e. N /\ K e. N ) -> ( R gsum ( p e. ( P \ { q e. P | ( q ` K ) = K } ) |-> ( ( ( Y o. S ) ` p ) .x. ( G gsum ( n e. N |-> ( n ( i e. N , j e. N |-> if ( i = K , if ( j = K , .1. , .0. ) , ( i M j ) ) ) ( p ` n ) ) ) ) ) ) ) = .0. ) |
12 | 11 | 3anidm23 | |- ( ( M e. B /\ K e. N ) -> ( R gsum ( p e. ( P \ { q e. P | ( q ` K ) = K } ) |-> ( ( ( Y o. S ) ` p ) .x. ( G gsum ( n e. N |-> ( n ( i e. N , j e. N |-> if ( i = K , if ( j = K , .1. , .0. ) , ( i M j ) ) ) ( p ` n ) ) ) ) ) ) ) = .0. ) |