Metamath Proof Explorer


Theorem symgbasfi

Description: The symmetric group on a finite index set is finite. (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses symgbas.1 G=SymGrpA
symgbas.2 B=BaseG
Assertion symgbasfi AFinBFin

Proof

Step Hyp Ref Expression
1 symgbas.1 G=SymGrpA
2 symgbas.2 B=BaseG
3 mapfi AFinAFinAAFin
4 3 anidms AFinAAFin
5 1 2 symgbas B=f|f:A1-1 ontoA
6 f1of f:A1-1 ontoAf:AA
7 6 ss2abi f|f:A1-1 ontoAf|f:AA
8 5 7 eqsstri Bf|f:AA
9 mapvalg AFinAFinAA=f|f:AA
10 9 anidms AFinAA=f|f:AA
11 8 10 sseqtrrid AFinBAA
12 4 11 ssfid AFinBFin