Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Finite sets (cont.)
mapfi
Next ⟩
ixpfi
Metamath Proof Explorer
Ascii
Unicode
Theorem
mapfi
Description:
Set exponentiation of finite sets is finite.
(Contributed by
Jeff Madsen
, 19-Jun-2011)
Ref
Expression
Assertion
mapfi
⊢
A
∈
Fin
∧
B
∈
Fin
→
A
B
∈
Fin
Proof
Step
Hyp
Ref
Expression
1
xpfi
⊢
B
∈
Fin
∧
A
∈
Fin
→
B
×
A
∈
Fin
2
1
ancoms
⊢
A
∈
Fin
∧
B
∈
Fin
→
B
×
A
∈
Fin
3
pwfi
⊢
B
×
A
∈
Fin
↔
𝒫
B
×
A
∈
Fin
4
2
3
sylib
⊢
A
∈
Fin
∧
B
∈
Fin
→
𝒫
B
×
A
∈
Fin
5
mapsspw
⊢
A
B
⊆
𝒫
B
×
A
6
ssfi
⊢
𝒫
B
×
A
∈
Fin
∧
A
B
⊆
𝒫
B
×
A
→
A
B
∈
Fin
7
4
5
6
sylancl
⊢
A
∈
Fin
∧
B
∈
Fin
→
A
B
∈
Fin