Metamath Proof Explorer


Theorem mapfi

Description: Set exponentiation of finite sets is finite. (Contributed by Jeff Madsen, 19-Jun-2011)

Ref Expression
Assertion mapfi AFinBFinABFin

Proof

Step Hyp Ref Expression
1 xpfi BFinAFinB×AFin
2 1 ancoms AFinBFinB×AFin
3 pwfi B×AFin𝒫B×AFin
4 2 3 sylib AFinBFin𝒫B×AFin
5 mapsspw AB𝒫B×A
6 ssfi 𝒫B×AFinAB𝒫B×AABFin
7 4 5 6 sylancl AFinBFinABFin