Metamath Proof Explorer


Theorem xpfi

Description: The Cartesian product of two finite sets is finite. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 12-Mar-2015) Avoid ax-pow . (Revised by BTernaryTau, 10-Jan-2025)

Ref Expression
Assertion xpfi AFinBFinA×BFin

Proof

Step Hyp Ref Expression
1 unfi AFinBFinABFin
2 pwfi ABFin𝒫ABFin
3 pwfi 𝒫ABFin𝒫𝒫ABFin
4 2 3 bitri ABFin𝒫𝒫ABFin
5 1 4 sylib AFinBFin𝒫𝒫ABFin
6 xpsspw A×B𝒫𝒫AB
7 ssfi 𝒫𝒫ABFinA×B𝒫𝒫ABA×BFin
8 5 6 7 sylancl AFinBFinA×BFin