Metamath Proof Explorer


Theorem submaval

Description: Third substitution for a submatrix. (Contributed by AV, 28-Dec-2018)

Ref Expression
Hypotheses submafval.a A = N Mat R
submafval.q Q = N subMat R
submafval.b B = Base A
Assertion submaval M B K N L N K Q M L = i N K , j N L i M j

Proof

Step Hyp Ref Expression
1 submafval.a A = N Mat R
2 submafval.q Q = N subMat R
3 submafval.b B = Base A
4 1 2 3 submaval0 M B Q M = k N , l N i N k , j N l i M j
5 4 3ad2ant1 M B K N L N Q M = k N , l N i N k , j N l i M j
6 simp2 M B K N L N K N
7 simpl3 M B K N L N k = K L N
8 1 3 matrcl M B N Fin R V
9 8 simpld M B N Fin
10 diffi N Fin N k Fin
11 9 10 syl M B N k Fin
12 diffi N Fin N l Fin
13 9 12 syl M B N l Fin
14 11 13 jca M B N k Fin N l Fin
15 14 3ad2ant1 M B K N L N N k Fin N l Fin
16 15 adantr M B K N L N k = K l = L N k Fin N l Fin
17 mpoexga N k Fin N l Fin i N k , j N l i M j V
18 16 17 syl M B K N L N k = K l = L i N k , j N l i M j V
19 sneq k = K k = K
20 19 difeq2d k = K N k = N K
21 20 adantr k = K l = L N k = N K
22 sneq l = L l = L
23 22 difeq2d l = L N l = N L
24 23 adantl k = K l = L N l = N L
25 eqidd k = K l = L i M j = i M j
26 21 24 25 mpoeq123dv k = K l = L i N k , j N l i M j = i N K , j N L i M j
27 26 adantl M B K N L N k = K l = L i N k , j N l i M j = i N K , j N L i M j
28 6 7 18 27 ovmpodv2 M B K N L N Q M = k N , l N i N k , j N l i M j K Q M L = i N K , j N L i M j
29 5 28 mpd M B K N L N K Q M L = i N K , j N L i M j