Metamath Proof Explorer


Theorem submaval0

Description: Second substitution for a submatrix. (Contributed by AV, 28-Dec-2018)

Ref Expression
Hypotheses submafval.a A=NMatR
submafval.q Q=NsubMatR
submafval.b B=BaseA
Assertion submaval0 MBQM=kN,lNiNk,jNliMj

Proof

Step Hyp Ref Expression
1 submafval.a A=NMatR
2 submafval.q Q=NsubMatR
3 submafval.b B=BaseA
4 1 3 matrcl MBNFinRV
5 4 simpld MBNFin
6 mpoexga NFinNFinkN,lNiNk,jNliMjV
7 5 5 6 syl2anc MBkN,lNiNk,jNliMjV
8 oveq m=Mimj=iMj
9 8 mpoeq3dv m=MiNk,jNlimj=iNk,jNliMj
10 9 mpoeq3dv m=MkN,lNiNk,jNlimj=kN,lNiNk,jNliMj
11 1 2 3 submafval Q=mBkN,lNiNk,jNlimj
12 10 11 fvmptg MBkN,lNiNk,jNliMjVQM=kN,lNiNk,jNliMj
13 7 12 mpdan MBQM=kN,lNiNk,jNliMj