Metamath Proof Explorer


Theorem symgfixf1o

Description: The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is a bijection. (Contributed by AV, 7-Jan-2019)

Ref Expression
Hypotheses symgfixf.p P=BaseSymGrpN
symgfixf.q Q=qP|qK=K
symgfixf.s S=BaseSymGrpNK
symgfixf.h H=qQqNK
Assertion symgfixf1o NVKNH:Q1-1 ontoS

Proof

Step Hyp Ref Expression
1 symgfixf.p P=BaseSymGrpN
2 symgfixf.q Q=qP|qK=K
3 symgfixf.s S=BaseSymGrpNK
4 symgfixf.h H=qQqNK
5 1 2 3 4 symgfixf1 KNH:Q1-1S
6 5 adantl NVKNH:Q1-1S
7 1 2 3 4 symgfixfo NVKNH:QontoS
8 df-f1o H:Q1-1 ontoSH:Q1-1SH:QontoS
9 6 7 8 sylanbrc NVKNH:Q1-1 ontoS