Description: The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is a bijection. (Contributed by AV, 7-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgfixf.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| symgfixf.q | |- Q = { q e. P | ( q ` K ) = K } |
||
| symgfixf.s | |- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
||
| symgfixf.h | |- H = ( q e. Q |-> ( q |` ( N \ { K } ) ) ) |
||
| Assertion | symgfixf1o | |- ( ( N e. V /\ K e. N ) -> H : Q -1-1-onto-> S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgfixf.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| 2 | symgfixf.q | |- Q = { q e. P | ( q ` K ) = K } |
|
| 3 | symgfixf.s | |- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
|
| 4 | symgfixf.h | |- H = ( q e. Q |-> ( q |` ( N \ { K } ) ) ) |
|
| 5 | 1 2 3 4 | symgfixf1 | |- ( K e. N -> H : Q -1-1-> S ) |
| 6 | 5 | adantl | |- ( ( N e. V /\ K e. N ) -> H : Q -1-1-> S ) |
| 7 | 1 2 3 4 | symgfixfo | |- ( ( N e. V /\ K e. N ) -> H : Q -onto-> S ) |
| 8 | df-f1o | |- ( H : Q -1-1-onto-> S <-> ( H : Q -1-1-> S /\ H : Q -onto-> S ) ) |
|
| 9 | 6 7 8 | sylanbrc | |- ( ( N e. V /\ K e. N ) -> H : Q -1-1-onto-> S ) |