| Step |
Hyp |
Ref |
Expression |
| 1 |
|
symgfixf.p |
|- P = ( Base ` ( SymGrp ` N ) ) |
| 2 |
|
symgfixf.q |
|- Q = { q e. P | ( q ` K ) = K } |
| 3 |
|
symgfixf.s |
|- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
| 4 |
|
symgfixf.h |
|- H = ( q e. Q |-> ( q |` ( N \ { K } ) ) ) |
| 5 |
1 2 3 4
|
symgfixf |
|- ( K e. N -> H : Q --> S ) |
| 6 |
4
|
fvtresfn |
|- ( g e. Q -> ( H ` g ) = ( g |` ( N \ { K } ) ) ) |
| 7 |
4
|
fvtresfn |
|- ( p e. Q -> ( H ` p ) = ( p |` ( N \ { K } ) ) ) |
| 8 |
6 7
|
eqeqan12d |
|- ( ( g e. Q /\ p e. Q ) -> ( ( H ` g ) = ( H ` p ) <-> ( g |` ( N \ { K } ) ) = ( p |` ( N \ { K } ) ) ) ) |
| 9 |
8
|
adantl |
|- ( ( K e. N /\ ( g e. Q /\ p e. Q ) ) -> ( ( H ` g ) = ( H ` p ) <-> ( g |` ( N \ { K } ) ) = ( p |` ( N \ { K } ) ) ) ) |
| 10 |
1 2
|
symgfixelq |
|- ( g e. _V -> ( g e. Q <-> ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) ) ) |
| 11 |
10
|
elv |
|- ( g e. Q <-> ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) ) |
| 12 |
1 2
|
symgfixelq |
|- ( p e. _V -> ( p e. Q <-> ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) |
| 13 |
12
|
elv |
|- ( p e. Q <-> ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) |
| 14 |
11 13
|
anbi12i |
|- ( ( g e. Q /\ p e. Q ) <-> ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) |
| 15 |
|
f1ofn |
|- ( g : N -1-1-onto-> N -> g Fn N ) |
| 16 |
15
|
adantr |
|- ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) -> g Fn N ) |
| 17 |
|
f1ofn |
|- ( p : N -1-1-onto-> N -> p Fn N ) |
| 18 |
17
|
adantr |
|- ( ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) -> p Fn N ) |
| 19 |
16 18
|
anim12i |
|- ( ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) -> ( g Fn N /\ p Fn N ) ) |
| 20 |
|
difss |
|- ( N \ { K } ) C_ N |
| 21 |
19 20
|
jctir |
|- ( ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) -> ( ( g Fn N /\ p Fn N ) /\ ( N \ { K } ) C_ N ) ) |
| 22 |
21
|
adantl |
|- ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) -> ( ( g Fn N /\ p Fn N ) /\ ( N \ { K } ) C_ N ) ) |
| 23 |
|
fvreseq |
|- ( ( ( g Fn N /\ p Fn N ) /\ ( N \ { K } ) C_ N ) -> ( ( g |` ( N \ { K } ) ) = ( p |` ( N \ { K } ) ) <-> A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) ) |
| 24 |
22 23
|
syl |
|- ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) -> ( ( g |` ( N \ { K } ) ) = ( p |` ( N \ { K } ) ) <-> A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) ) |
| 25 |
|
f1of |
|- ( g : N -1-1-onto-> N -> g : N --> N ) |
| 26 |
25
|
adantr |
|- ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) -> g : N --> N ) |
| 27 |
|
f1of |
|- ( p : N -1-1-onto-> N -> p : N --> N ) |
| 28 |
27
|
adantr |
|- ( ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) -> p : N --> N ) |
| 29 |
|
fdm |
|- ( g : N --> N -> dom g = N ) |
| 30 |
|
fdm |
|- ( p : N --> N -> dom p = N ) |
| 31 |
29 30
|
anim12i |
|- ( ( g : N --> N /\ p : N --> N ) -> ( dom g = N /\ dom p = N ) ) |
| 32 |
26 28 31
|
syl2an |
|- ( ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) -> ( dom g = N /\ dom p = N ) ) |
| 33 |
|
eqtr3 |
|- ( ( dom g = N /\ dom p = N ) -> dom g = dom p ) |
| 34 |
32 33
|
syl |
|- ( ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) -> dom g = dom p ) |
| 35 |
34
|
ad2antlr |
|- ( ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) /\ A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) -> dom g = dom p ) |
| 36 |
|
simpr |
|- ( ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) /\ A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) -> A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) |
| 37 |
|
eqtr3 |
|- ( ( ( g ` K ) = K /\ ( p ` K ) = K ) -> ( g ` K ) = ( p ` K ) ) |
| 38 |
37
|
ad2ant2l |
|- ( ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) -> ( g ` K ) = ( p ` K ) ) |
| 39 |
38
|
ad2antlr |
|- ( ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) /\ A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) -> ( g ` K ) = ( p ` K ) ) |
| 40 |
|
fveq2 |
|- ( i = K -> ( g ` i ) = ( g ` K ) ) |
| 41 |
|
fveq2 |
|- ( i = K -> ( p ` i ) = ( p ` K ) ) |
| 42 |
40 41
|
eqeq12d |
|- ( i = K -> ( ( g ` i ) = ( p ` i ) <-> ( g ` K ) = ( p ` K ) ) ) |
| 43 |
42
|
ralunsn |
|- ( K e. N -> ( A. i e. ( ( N \ { K } ) u. { K } ) ( g ` i ) = ( p ` i ) <-> ( A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) /\ ( g ` K ) = ( p ` K ) ) ) ) |
| 44 |
43
|
adantr |
|- ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) -> ( A. i e. ( ( N \ { K } ) u. { K } ) ( g ` i ) = ( p ` i ) <-> ( A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) /\ ( g ` K ) = ( p ` K ) ) ) ) |
| 45 |
44
|
adantr |
|- ( ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) /\ A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) -> ( A. i e. ( ( N \ { K } ) u. { K } ) ( g ` i ) = ( p ` i ) <-> ( A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) /\ ( g ` K ) = ( p ` K ) ) ) ) |
| 46 |
36 39 45
|
mpbir2and |
|- ( ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) /\ A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) -> A. i e. ( ( N \ { K } ) u. { K } ) ( g ` i ) = ( p ` i ) ) |
| 47 |
|
f1odm |
|- ( g : N -1-1-onto-> N -> dom g = N ) |
| 48 |
47
|
adantr |
|- ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) -> dom g = N ) |
| 49 |
48
|
adantr |
|- ( ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) -> dom g = N ) |
| 50 |
|
difsnid |
|- ( K e. N -> ( ( N \ { K } ) u. { K } ) = N ) |
| 51 |
50
|
eqcomd |
|- ( K e. N -> N = ( ( N \ { K } ) u. { K } ) ) |
| 52 |
49 51
|
sylan9eqr |
|- ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) -> dom g = ( ( N \ { K } ) u. { K } ) ) |
| 53 |
52
|
adantr |
|- ( ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) /\ A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) -> dom g = ( ( N \ { K } ) u. { K } ) ) |
| 54 |
46 53
|
raleqtrrdv |
|- ( ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) /\ A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) -> A. i e. dom g ( g ` i ) = ( p ` i ) ) |
| 55 |
|
f1ofun |
|- ( g : N -1-1-onto-> N -> Fun g ) |
| 56 |
55
|
adantr |
|- ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) -> Fun g ) |
| 57 |
|
f1ofun |
|- ( p : N -1-1-onto-> N -> Fun p ) |
| 58 |
57
|
adantr |
|- ( ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) -> Fun p ) |
| 59 |
56 58
|
anim12i |
|- ( ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) -> ( Fun g /\ Fun p ) ) |
| 60 |
59
|
ad2antlr |
|- ( ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) /\ A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) -> ( Fun g /\ Fun p ) ) |
| 61 |
|
eqfunfv |
|- ( ( Fun g /\ Fun p ) -> ( g = p <-> ( dom g = dom p /\ A. i e. dom g ( g ` i ) = ( p ` i ) ) ) ) |
| 62 |
60 61
|
syl |
|- ( ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) /\ A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) -> ( g = p <-> ( dom g = dom p /\ A. i e. dom g ( g ` i ) = ( p ` i ) ) ) ) |
| 63 |
35 54 62
|
mpbir2and |
|- ( ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) /\ A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) -> g = p ) |
| 64 |
63
|
ex |
|- ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) -> ( A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) -> g = p ) ) |
| 65 |
24 64
|
sylbid |
|- ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) -> ( ( g |` ( N \ { K } ) ) = ( p |` ( N \ { K } ) ) -> g = p ) ) |
| 66 |
14 65
|
sylan2b |
|- ( ( K e. N /\ ( g e. Q /\ p e. Q ) ) -> ( ( g |` ( N \ { K } ) ) = ( p |` ( N \ { K } ) ) -> g = p ) ) |
| 67 |
9 66
|
sylbid |
|- ( ( K e. N /\ ( g e. Q /\ p e. Q ) ) -> ( ( H ` g ) = ( H ` p ) -> g = p ) ) |
| 68 |
67
|
ralrimivva |
|- ( K e. N -> A. g e. Q A. p e. Q ( ( H ` g ) = ( H ` p ) -> g = p ) ) |
| 69 |
|
dff13 |
|- ( H : Q -1-1-> S <-> ( H : Q --> S /\ A. g e. Q A. p e. Q ( ( H ` g ) = ( H ` p ) -> g = p ) ) ) |
| 70 |
5 68 69
|
sylanbrc |
|- ( K e. N -> H : Q -1-1-> S ) |