| Step | Hyp | Ref | Expression | 
						
							| 1 |  | symgfixf.p |  |-  P = ( Base ` ( SymGrp ` N ) ) | 
						
							| 2 |  | symgfixf.q |  |-  Q = { q e. P | ( q ` K ) = K } | 
						
							| 3 |  | symgfixf.s |  |-  S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) | 
						
							| 4 |  | symgfixf.h |  |-  H = ( q e. Q |-> ( q |` ( N \ { K } ) ) ) | 
						
							| 5 | 1 2 3 4 | symgfixf |  |-  ( K e. N -> H : Q --> S ) | 
						
							| 6 | 4 | fvtresfn |  |-  ( g e. Q -> ( H ` g ) = ( g |` ( N \ { K } ) ) ) | 
						
							| 7 | 4 | fvtresfn |  |-  ( p e. Q -> ( H ` p ) = ( p |` ( N \ { K } ) ) ) | 
						
							| 8 | 6 7 | eqeqan12d |  |-  ( ( g e. Q /\ p e. Q ) -> ( ( H ` g ) = ( H ` p ) <-> ( g |` ( N \ { K } ) ) = ( p |` ( N \ { K } ) ) ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( K e. N /\ ( g e. Q /\ p e. Q ) ) -> ( ( H ` g ) = ( H ` p ) <-> ( g |` ( N \ { K } ) ) = ( p |` ( N \ { K } ) ) ) ) | 
						
							| 10 | 1 2 | symgfixelq |  |-  ( g e. _V -> ( g e. Q <-> ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) ) ) | 
						
							| 11 | 10 | elv |  |-  ( g e. Q <-> ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) ) | 
						
							| 12 | 1 2 | symgfixelq |  |-  ( p e. _V -> ( p e. Q <-> ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) | 
						
							| 13 | 12 | elv |  |-  ( p e. Q <-> ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) | 
						
							| 14 | 11 13 | anbi12i |  |-  ( ( g e. Q /\ p e. Q ) <-> ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) | 
						
							| 15 |  | f1ofn |  |-  ( g : N -1-1-onto-> N -> g Fn N ) | 
						
							| 16 | 15 | adantr |  |-  ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) -> g Fn N ) | 
						
							| 17 |  | f1ofn |  |-  ( p : N -1-1-onto-> N -> p Fn N ) | 
						
							| 18 | 17 | adantr |  |-  ( ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) -> p Fn N ) | 
						
							| 19 | 16 18 | anim12i |  |-  ( ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) -> ( g Fn N /\ p Fn N ) ) | 
						
							| 20 |  | difss |  |-  ( N \ { K } ) C_ N | 
						
							| 21 | 19 20 | jctir |  |-  ( ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) -> ( ( g Fn N /\ p Fn N ) /\ ( N \ { K } ) C_ N ) ) | 
						
							| 22 | 21 | adantl |  |-  ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) -> ( ( g Fn N /\ p Fn N ) /\ ( N \ { K } ) C_ N ) ) | 
						
							| 23 |  | fvreseq |  |-  ( ( ( g Fn N /\ p Fn N ) /\ ( N \ { K } ) C_ N ) -> ( ( g |` ( N \ { K } ) ) = ( p |` ( N \ { K } ) ) <-> A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) ) | 
						
							| 24 | 22 23 | syl |  |-  ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) -> ( ( g |` ( N \ { K } ) ) = ( p |` ( N \ { K } ) ) <-> A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) ) | 
						
							| 25 |  | f1of |  |-  ( g : N -1-1-onto-> N -> g : N --> N ) | 
						
							| 26 | 25 | adantr |  |-  ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) -> g : N --> N ) | 
						
							| 27 |  | f1of |  |-  ( p : N -1-1-onto-> N -> p : N --> N ) | 
						
							| 28 | 27 | adantr |  |-  ( ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) -> p : N --> N ) | 
						
							| 29 |  | fdm |  |-  ( g : N --> N -> dom g = N ) | 
						
							| 30 |  | fdm |  |-  ( p : N --> N -> dom p = N ) | 
						
							| 31 | 29 30 | anim12i |  |-  ( ( g : N --> N /\ p : N --> N ) -> ( dom g = N /\ dom p = N ) ) | 
						
							| 32 | 26 28 31 | syl2an |  |-  ( ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) -> ( dom g = N /\ dom p = N ) ) | 
						
							| 33 |  | eqtr3 |  |-  ( ( dom g = N /\ dom p = N ) -> dom g = dom p ) | 
						
							| 34 | 32 33 | syl |  |-  ( ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) -> dom g = dom p ) | 
						
							| 35 | 34 | ad2antlr |  |-  ( ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) /\ A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) -> dom g = dom p ) | 
						
							| 36 |  | simpr |  |-  ( ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) /\ A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) -> A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) | 
						
							| 37 |  | eqtr3 |  |-  ( ( ( g ` K ) = K /\ ( p ` K ) = K ) -> ( g ` K ) = ( p ` K ) ) | 
						
							| 38 | 37 | ad2ant2l |  |-  ( ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) -> ( g ` K ) = ( p ` K ) ) | 
						
							| 39 | 38 | ad2antlr |  |-  ( ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) /\ A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) -> ( g ` K ) = ( p ` K ) ) | 
						
							| 40 |  | fveq2 |  |-  ( i = K -> ( g ` i ) = ( g ` K ) ) | 
						
							| 41 |  | fveq2 |  |-  ( i = K -> ( p ` i ) = ( p ` K ) ) | 
						
							| 42 | 40 41 | eqeq12d |  |-  ( i = K -> ( ( g ` i ) = ( p ` i ) <-> ( g ` K ) = ( p ` K ) ) ) | 
						
							| 43 | 42 | ralunsn |  |-  ( K e. N -> ( A. i e. ( ( N \ { K } ) u. { K } ) ( g ` i ) = ( p ` i ) <-> ( A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) /\ ( g ` K ) = ( p ` K ) ) ) ) | 
						
							| 44 | 43 | adantr |  |-  ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) -> ( A. i e. ( ( N \ { K } ) u. { K } ) ( g ` i ) = ( p ` i ) <-> ( A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) /\ ( g ` K ) = ( p ` K ) ) ) ) | 
						
							| 45 | 44 | adantr |  |-  ( ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) /\ A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) -> ( A. i e. ( ( N \ { K } ) u. { K } ) ( g ` i ) = ( p ` i ) <-> ( A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) /\ ( g ` K ) = ( p ` K ) ) ) ) | 
						
							| 46 | 36 39 45 | mpbir2and |  |-  ( ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) /\ A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) -> A. i e. ( ( N \ { K } ) u. { K } ) ( g ` i ) = ( p ` i ) ) | 
						
							| 47 |  | f1odm |  |-  ( g : N -1-1-onto-> N -> dom g = N ) | 
						
							| 48 | 47 | adantr |  |-  ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) -> dom g = N ) | 
						
							| 49 | 48 | adantr |  |-  ( ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) -> dom g = N ) | 
						
							| 50 |  | difsnid |  |-  ( K e. N -> ( ( N \ { K } ) u. { K } ) = N ) | 
						
							| 51 | 50 | eqcomd |  |-  ( K e. N -> N = ( ( N \ { K } ) u. { K } ) ) | 
						
							| 52 | 49 51 | sylan9eqr |  |-  ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) -> dom g = ( ( N \ { K } ) u. { K } ) ) | 
						
							| 53 | 52 | adantr |  |-  ( ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) /\ A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) -> dom g = ( ( N \ { K } ) u. { K } ) ) | 
						
							| 54 | 46 53 | raleqtrrdv |  |-  ( ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) /\ A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) -> A. i e. dom g ( g ` i ) = ( p ` i ) ) | 
						
							| 55 |  | f1ofun |  |-  ( g : N -1-1-onto-> N -> Fun g ) | 
						
							| 56 | 55 | adantr |  |-  ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) -> Fun g ) | 
						
							| 57 |  | f1ofun |  |-  ( p : N -1-1-onto-> N -> Fun p ) | 
						
							| 58 | 57 | adantr |  |-  ( ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) -> Fun p ) | 
						
							| 59 | 56 58 | anim12i |  |-  ( ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) -> ( Fun g /\ Fun p ) ) | 
						
							| 60 | 59 | ad2antlr |  |-  ( ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) /\ A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) -> ( Fun g /\ Fun p ) ) | 
						
							| 61 |  | eqfunfv |  |-  ( ( Fun g /\ Fun p ) -> ( g = p <-> ( dom g = dom p /\ A. i e. dom g ( g ` i ) = ( p ` i ) ) ) ) | 
						
							| 62 | 60 61 | syl |  |-  ( ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) /\ A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) -> ( g = p <-> ( dom g = dom p /\ A. i e. dom g ( g ` i ) = ( p ` i ) ) ) ) | 
						
							| 63 | 35 54 62 | mpbir2and |  |-  ( ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) /\ A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) -> g = p ) | 
						
							| 64 | 63 | ex |  |-  ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) -> ( A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) -> g = p ) ) | 
						
							| 65 | 24 64 | sylbid |  |-  ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) -> ( ( g |` ( N \ { K } ) ) = ( p |` ( N \ { K } ) ) -> g = p ) ) | 
						
							| 66 | 14 65 | sylan2b |  |-  ( ( K e. N /\ ( g e. Q /\ p e. Q ) ) -> ( ( g |` ( N \ { K } ) ) = ( p |` ( N \ { K } ) ) -> g = p ) ) | 
						
							| 67 | 9 66 | sylbid |  |-  ( ( K e. N /\ ( g e. Q /\ p e. Q ) ) -> ( ( H ` g ) = ( H ` p ) -> g = p ) ) | 
						
							| 68 | 67 | ralrimivva |  |-  ( K e. N -> A. g e. Q A. p e. Q ( ( H ` g ) = ( H ` p ) -> g = p ) ) | 
						
							| 69 |  | dff13 |  |-  ( H : Q -1-1-> S <-> ( H : Q --> S /\ A. g e. Q A. p e. Q ( ( H ` g ) = ( H ` p ) -> g = p ) ) ) | 
						
							| 70 | 5 68 69 | sylanbrc |  |-  ( K e. N -> H : Q -1-1-> S ) |