Description: The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is a function. (Contributed by AV, 4-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgfixf.p | |- P = ( Base ` ( SymGrp ` N ) ) | |
| symgfixf.q | |- Q = { q e. P | ( q ` K ) = K } | ||
| symgfixf.s | |- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) | ||
| symgfixf.h | |- H = ( q e. Q |-> ( q |` ( N \ { K } ) ) ) | ||
| Assertion | symgfixf | |- ( K e. N -> H : Q --> S ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | symgfixf.p | |- P = ( Base ` ( SymGrp ` N ) ) | |
| 2 | symgfixf.q |  |-  Q = { q e. P | ( q ` K ) = K } | |
| 3 | symgfixf.s |  |-  S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) | |
| 4 | symgfixf.h |  |-  H = ( q e. Q |-> ( q |` ( N \ { K } ) ) ) | |
| 5 | eqid |  |-  ( N \ { K } ) = ( N \ { K } ) | |
| 6 | 1 2 3 5 | symgfixelsi |  |-  ( ( K e. N /\ q e. Q ) -> ( q |` ( N \ { K } ) ) e. S ) | 
| 7 | 6 4 | fmptd | |- ( K e. N -> H : Q --> S ) |