Metamath Proof Explorer


Theorem symgfixf

Description: The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is a function. (Contributed by AV, 4-Jan-2019)

Ref Expression
Hypotheses symgfixf.p P=BaseSymGrpN
symgfixf.q Q=qP|qK=K
symgfixf.s S=BaseSymGrpNK
symgfixf.h H=qQqNK
Assertion symgfixf KNH:QS

Proof

Step Hyp Ref Expression
1 symgfixf.p P=BaseSymGrpN
2 symgfixf.q Q=qP|qK=K
3 symgfixf.s S=BaseSymGrpNK
4 symgfixf.h H=qQqNK
5 eqid NK=NK
6 1 2 3 5 symgfixelsi KNqQqNKS
7 6 4 fmptd KNH:QS